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Abstract

In this work, we investigate the preparation and local manipulation of photonic W states,

which have interesting structure of forming a weblike structure in which every qubit is

entangled with every other qubit with the optimal bipartite entanglement.

The first part of this thesis covers three elementary optical gates we have designed for the

preparation, expansion and fusion of W states. In all these operations, we restrict ourselves

to local manipulations at a single site and classical communication. The first gate extends

an N -photon W state into an (N + 1)-photon W state using a polarization dependent

beamsplitter and an ancillary one-photon Fock state. The second gate is composed of two

beamsplitters and it uses an ancillary two-photon Fock state. This gate expands an N -

photon W state into an (N +2)-photon W state. The last gate is a fusion gate that receives

one photon from each of two arbitrary size W states (WN and WM) and when successful

it fuses them together to produce a larger W state with N + M + 2 photons.

The second part of the thesis contains an experimental demonstration of how two EPR

photon pairs can be transformed into a three-photon W state by local operations and

classical communication with a high fidelity. The key ingredient in this experiment is a

polarization dependent beamsplitter, which has different transmission/reflection character-

istics for horizontal and vertical polarized photons. We characterized the final state using

quantum state tomography on the three-photon state and on its marginal bipartite states

experimentally. The fidelity of the final state to the ideal W state is 0.778 ± 0.043 and

the expectation value for its witness operator is −0.111± 0.043 implying the success of the

proposed local transformation.
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Chapter 1

Introduction

1.1 Background

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) implied a groundbreak-

ing notion that the counterintuitive features of entanglement, which was named by Erwin

Schrödinger [1], cause effects that raise the incompleteness of quantum mechanics [2]. For

a long time, most physicists have been enchanted by the notion of entanglement. In 1964,

John Bell pointed out that EPR problem indeed leads to gedanken experiment that do not

behave according to the predictions of classical physics. His approach has become an impor-

tant test to determine whether a given physical system abides the rules of classical physics

or those of quantum mechanics [3]: If the statistics of the measurement outcomes violate

the so-called “Bell inequalities” then one can safely conclude the presence of entanglement

in the system. In the past years, a number of different Bell inequalities have been proposed

and experiments have been performed to check the violation of these inequalities on var-

ious systems [4-6]. The reconciliation on the notion of entanglement among the quantum

physicists opened an exciting phase in the research of quantum mechanics. Entanglement

is now regarded as a purely quantum mechanical resource that plays an essential role in

various quantum information processing tasks [7-26]. We can now use entanglement for

quantum teleportation [7], quantum key distribution (QKD) [8], quantum computation [9]

11
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and quantum metrology [10].

Research in quantum information science carried out in the past few decades has revealed

most of the interesting properties of bipartite entanglement: We know how to prepare,

characterize and quantify entanglement between two subsystems of a larger system. In

particular, given a single resource of qubits in a maximally entangled state in a bipartite

system, which is called an EPR pair, any bipartite qubit state can be prepared using only

local operations and classical communication (LOCC). In other words, any bipartite qubit

state can be prepared from an EPR pair without direct interaction between the systems

located far apart. By contrast, entanglement among three or more systems still remains as

a challenge because such qubits have a richer and more complex structure which originates

from the existence of different ways the qubits can be entangled with each other such

as the Greenberger-Horne-Zeilinger (GHZ)-type state [27], W-type state [28, 29], cluster

state [30] and Dicke state [31]. The higher is the number of parties entangled, the more

complicated are the preparation, control and manipulation of entanglement, as well as the

quantification of its amount in the multipartite system. Thus, it is necessary to study their

classification and properties from the standpoint of theory and experiment. In addition,

it is also desirable that preparation and manipulation are carried out in an elegant and

efficient way, and the characterization of the state is efficiently estimated by a low number

of measurement data sets.

In 1997, preparation schemes of a three-photon GHZ state and a four-photon GHZ

state were first proposed by Zeilinger et al. [32]. In 1999, D. Bouwmeester et al., [33]

demonstrated the preparation of a three-photon GHZ state. In the same year, J. G. Rarity

et al. [34] demonstrated a preparation of a three-photon GHZ state using an EPR photon

pair and weak coherent light. In 2005, Resch et al. [35] demonstrated a local transformation

of two EPR photon pairs into a three-photon GHZ state using a polarizing beamsplitter

that performs parity checking. They then characterized the density matrix of the prepared

three-photon state by quantum state tomography. Using bell-multiport beamsplitter and

four single photon sources, a preparation scheme of a four-photon GHZ state was proposed

by Lim et al. [36]. In 2007, Walther et al. [37] proposed a preparation scheme of a multi-
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photon GHZ state. On the other hand, for a W state, Zeilinger et al. [38] proposed a

scheme using third order optical nonlinearity for three photons entangled in their paths in

1997. In 2002, Yamamoto et al. [39] proposed the scheme for preparing a three-photon W

state from four photons emitted by parametric down-conversion (PDC). A preparation of

three-photon W state were demonstrated by Kiesel et al. [40] in 2003 and Eibl et al. [41]

in 2004. In 2005, Mikami et al. [42] demonstrated a preparation of a three-photon W state

by using one EPR photon pair and weak coherent light. In the same year, Walther et al.

[43] demonstrated local conversion of a three-photon GHZ state into an approximate W

state. For a four-photon W state, there have been four proposals so far: (i) The scheme

introduced by X. Zou et al. [44] requires an EPR photon pair from PDC process and two

single photons as input modes. (ii) The scheme of Lim et al. [36] and B. -S. Shi et al. [45]

employs 4×4 lossless multiport fiber beam splitter and four single photons. (iii) The scheme

proposed by Y. Li et al. [46] uses four photons generated by parametric down-conversion

(PDC). On the basis of these historical backgrounds, in the next section, we will give the

motivation for the present study and the thesis.

1.2 Motivation and outline of our work

In this work, we have focused our research on the preparation and local manipulation of

photonic W states due to their interesting structure of forming a weblike structure in which

every qubit is entangled with every other qubit with the optimal bipartite entanglement.

Our work can be grouped into two sections. Below we give our motivation in carrying out

this research.

1.2.1 Local expansion and fusion of multipartite W state

The distinction between GHZ and W states shows up when we consider how one can

increase the number of qubits forming W or GHZ states. In the case of GHZ states, there

is a systematic way to extend its size without accessing all of the qubits: One can pick

the N -th qubit of GHZ state and let it interact with a new qubit to produce the N + 1
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Figure 1.1: Local expansion and fusion of (a) a GHZ-type state and (b) a W-type

state.

qubit GHZ state [see Fig. 1.1 (a)]. This is not surprising since (i) the marginal state of the

remaining untouched N − 1 qubits is the same for the N qubit GHZ state and the N + 1

qubit GHZ state, and (ii) the N -th qubit is pivotal such that if we remove and discard it,

the rest of the qubits will be disentangled. It has been shown that GHZ state as the initial

seeds, quantum parity checking gates [47] can be used to grow large scale GHZ state [see

Appendix A]. There are schemes of Resch et al. [35] and Zhao et al. [17] using a polarizing

beamsplitter acting as parity checking gates.

On the other hand, it is not so trivial whether such a local expansion of W states is

possible or not. For one thing, the marginal states of N − 1 qubits are different for the

N -qubit W state and the (N + 1)-qubit W state. Hence no unitary operation on the N -th

qubit and a new qubit makes the (N + 1)-qubit W state [see Fig. 1.1 (b)]. In addition,

newly added qubits must form the pairwise entanglement with each of the uninteracted

N − 1 qubits. So far, the study of W states using linear optics have been lagging, and
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it begs for efficient elementary-gate-based approach which will enable large scale W-state

networks. Current proposals for W states either suffer from low success probability or the

requirement of fragile interferometers besides their non-cascadable structures.

In this thesis, we propose two local expansion schemes and one fusion scheme for pho-

tonic W states. We first propose the local expansion scheme using one polarization depen-

dent beamsplitter [48] and then introduce another local expansion scheme that uses two

non-polarizing beamsplitters [49]. Finally, we propose the fusion scheme of two W states

to each other by performing parity checking.

1.2.2 Local transformation of two EPR pairs into a tripartite W

state

In quantum communication, it is important to locally prepare and manipulate multipartite

entangled states among distantly located parties. The simplest situation is to share tripar-

tite entanglement among three parties. Existence of the distinct classes implies that there is

no three-qubit state that can be used as a universal resource for generating arbitrary three-

qubit pure states under LOCC. For this purpose, one must look for a resource in larger

systems. One of the simplest way is to distribute the resource of an EPR pair between one

party (Charlie) and each of the other parties (Alice and Bob). Starting with this resource,

it is at least theoretically easy to show that Charlie can prepare three local auxiliary qubits

in the desired three-qubit state, which may be an entangled state, and then faithfully send

one qubit to Alice and another to Bob by quantum teleportation [7]. Since this scenario

involves seven qubits in total, it is hard to carry out in experiments [see Fig. 1.2 (a)]. Thus,

a more direct and efficient way of converting EPR pairs to three-qubit states is desired [see

Fig. 1.2 (b)]. For the GHZ-type states, it is easy to do this since we can convert the two

EPR pairs to a three-photon GHZ state by quantum parity checking [32, 47], which can

be done by a polarization beam splitter and post-selection[17, 35]. Any GHZ-type state is

then produced with nonzero probability by applying a unitary operation and local filtering

on each photon, which can be done with high precision. This line of strategy was further
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Figure 1.2: Tripartite entanglement preparation schemes using two EPR pairs

shared by Alice, Bob and Charlie: (a) Preparing three local auxiliary

qubits in the desired three-qubit state on charlie’s side and then faith-

fully sending one qubit to Alice and another to Bob by quantum telepor-

tation, and (b) converting two EPR pairs to desired three-qubit states

directly.

extended for the W-type states by Walther et al. [43], who experimentally demonstrated

that a three-photon W state can be approximately generated from the three-photon GHZ

state by LOCC. In this method, there is a trade-off between the success probability and

the fidelity of the final state such that the fidelity approaches unity only in the limit of zero

success probability, which reflects the fact that the three-photon GHZ and W states belong

to distinct classes of states.

In this thesis, we proposed and experimentally demonstrated the missing path of re-

source conversion, namely, direct transformation of two EPR photon pairs into the three-

photon W state [50]. Our scheme simply uses a polarization-dependent beam splitter

(PDBS) and a photon detection to realize a desired transformation of Charlie’s two photons

into one photon.



Chapter 2

Classification and evaluation of

Multipartite entanglement

In this Chapter, we will give the fundamental principles of quantum mechanics and the tools

for a study of entanglement. In Sec. 2.1, we introduce elements of quantum information. In

Sec. 2.2, we introduce a Bell basis and the estimation of the density operator of a bipartite

system together with the amount of its entanglement. Sec. 2.3 covers a review of the

classification of tripartite entangled states and the concept of entanglement witness.

2.1 Brief introduction to quantum information

In this section, we introduce quantum bit. It is the quantum mechanical counterpart of the

classical bit. We also give the fundamental principle in quantum mechanics.

2.1.1 Quantum bits

Quantum states are represented in a Hilbert space known as the sate space of the system.

The state of the system is described by a unit vector in its state space.

In 1995, Schumacher [51] introduced the notion of quantum bit, “qubit”, after the ex-

ample of classical bit (either 0 or 1) in classical information theory. In this thesis, we define

17
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H
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V

R

D

x
y

z

Figure 2.1: Bloch sphere representation of a qubit in Hilbert space. Here |D/D̄〉 =

(|H〉 ± |V〉)/√2 and |R/L〉 = (|H〉 ± i|V〉)/√2. The eigenstate of the

Pauli matrices lie on the corresponding three orthogonal axis (x, y, z) in

the example of Sec 2.1.2 (i).

a qubit as polarization states of a photon. A horizontally polarized state and a vertically

polarized state are represented by |H〉 and |V〉, respectively. The state of single qubit is

represented as

|ψ〉 = eiγ

(
cos(

θ

2
)|H〉+ eiϕsin(

θ

2
)|V〉

)
, (2.1)

where θ, γ, and ϕ are real numbers. Here we can ignore the global phase eiγ because

it has no observable effects. Combining this with the facts, |ψ〉 = −|ψ〉|(θ→θ+2π), |ψ〉 =

−|ψ〉|(θ→2π−θ, ϕ→ϕ+π) and |ψ〉 = |ψ〉|(ϕ→ϕ+2π), we see that the state |ψ〉 can be completely

parameterized by 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. This implies that the state |ψ〉 can be

determined by a unit vector n = (sin(θ)cos(ϕ), sin(θ)sin(ϕ), cos(θ)) pointing the surface

of a unit sphere. This vector is called Bloch vector, and the sphere is called Bloch sphere

[see Fig. 2.1].
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2.1.2 Elements of quantum mechanics

In this section, we will briefly introduce the fundamental ingredients in quantum mechanics.

(i)Unitary transformation

The evolution of a closed quantum system is described by a unitary transformation. For

example, the state |φ(t)〉 of the system at time t is related to the state |φ(t + ∆t)〉 by a

unitary operator, U ,

|φ(t + ∆t)〉 = U |φ(t)〉. (2.2)

Unitary operators that are called the Pauli operators play a fundamental role in quantum

information science. The Pauli operators consist of {I, σx, σy, σz} where I is the identity

operator, σx and σz respectively represent bit and phase flip operators and σy corresponds

to a phase flip followed by a bit flip, namely σy = iσxσz.

(ii)Measurement

Measurements on quantum states are described by a collection {Mm} of the measurement

operators acting on the state space being measured. The index m is associated with the

measurement outcomes. If the state is given by |φ〉, the state after the measurement with

the measurement outcome m becomes

Mm|φ〉√
〈φ |Mm

†Mm|φ〉
(2.3)

with the probability for result m is given by,

p(m) = 〈φ |Mm
†Mm|φ〉. (2.4)

The measurement operators satisfy the completeness equation,

∑
m

Mm
†Mm = I, (2.5)

which means that the probabilities sum to one.
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Projective Measurement

A projective measurement is one of important measurements. A projective measurement is

described by an observable M , which is a Hermitian operator on the state being observed.

The observable has a spectral decomposition,

M =
∑
m

mPm, (2.6)

where Pm is the projector onto the eigenspace of M with eigenvalue m, and satisfies Pm
2 =

Pm. The outcomes of the measurement correspond to the eigenvalues, m, of the observable.

If the state is given by |φ〉, the probability of getting result m is given by

p(m) = Tr[|φ〉〈φ |Pm]. (2.7)

POVM Measurement

In quantum mechanics, it is often the case that we are not interested in post-measurement

states and our main concern is the probabilities of the respective measurement outcomes.

In this case, a mathematical tool which is called Positive operator valued measure (POVM)

is used. POVM is defined by a collection of positive operators {Em} with the completeness

condition
∑

Em = I. The probability of obtaining the measurement outcome m when we

measure the state |φ〉 is given by

p(m) = Tr[|φ〉〈φ |Em]. (2.8)

(iii)Density matrices

A convenient alternative formulation for representing the states is the so-called density

operator formulation which is mathematically equivalent to the pure state approach given

in the previous section. Given an ensemble of states {|φ1〉, |φ2〉, |φ3〉 · · · , |φn〉} ∈ H with

each state |φi〉 taking place with probability pi, the density matrix for this ensemble, which

represents a mixture of all the states {|φi〉}, is defined as

ρ =
n∑

i=1

pi|φi〉〈φi |. (2.9)
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The evolution of a density operator is described by

ρ(t + ∆t) = Uρ(t)U †. (2.10)

The density operator after the measurement {Mm} is given by

MmρM †
m

Tr[MmρM †
m]

(2.11)

where Tr[MmρM †
m] gives the probability of the measurement outcome m. Moreover, the

probability of outcome m in the measurement specified by POVM {Em} is written by

p(m) = Tr[ρEm]. (2.12)

2.1.3 Fidelity

Fidelity is an important distance measure that is used to quantify how close two given

states are. In 1976, Uhlmann [52] proposed the fidelity of two mixed states ρ and σ, which

is represented by

F =
(
Tr

[√√
σρ
√

σ
])2

. (2.13)

In special case of the fidelity between a pure state |φ〉 and an arbitrary state ρ, the expres-

sion in Eq. (2.13) simplifies to

F = Tr[ρ|φ〉〈φ |] = 〈φ |ρ|φ〉. (2.14)

2.2 Bipartite entanglement

In this section, we will review the basic properties of bipartite entanglement and the meth-

ods of quantifying the amount of entanglement in bipartite systems.

In quantum world, there is a property that cannot be described in classical world. To

define this new feature, we introduce a paradigm where distantly located parties Alice and

Bob are permitted to use local operations (LO) and classical communication (CC) channel
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Alice Bob

Classical Communication (CC)

Local Operations (LO)

Figure 2.2: Local operations and classical communication (LOCC).

such as telephone [see Fig. 2.2]. This paradigm is called LOCC. The correlation made in

this paradigm should be called classical. For example, a state in the form of

ρ =
∑

i

piρ
(i)
A ⊗ ρ

(i)
B (2.15)

can be freely created by LOCC. This type of state is called separable state. Conversely,

correlation that cannot be created by LOCC should be called non-classical or quantum.

Such correlation is dubbed entanglement.

A famous example of a state holding entanglement, so called an EPR pair, is

|Φ+〉 =
1√
2
(|H〉A|H〉B + |V〉A|V〉B). (2.16)

General entangled states are not restricted in this form.

To quantify entanglement of a system, entanglement measures were introduced by the

effort of quantum information theory. For example, entanglement measure of pure states is

ES(|ψAB〉) = S
(
TrA(B)[|ψ〉〈ψ |AB]

)
(2.17)

where S is the von Neumann entropy defined by

S(ρ) = −Tr[ρlog2(ρ)]. (2.18)

One of the entanglement measures for mixed states is entanglement of formation EF :

EF (ρ) ≡ min
{pi,|φi〉}

∑
i

piES(|φi〉), (2.19)
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where the minimum is taken over all ensembles {pi, |φi〉} satisfying ρ =
∑

i pi|φi〉〈φi |. In

general, it is hard to quantify the value of EF (ρ). However, for two qubits, Wootters [53]

has found the formula of EF enabling easy calculations. In Sec. 2.2.2, we review shortly

this formula.

2.2.1 Bell basis

A Bell basis is defined as

|Φ+〉 =
1√
2
(|H〉1|H〉2 + |V〉1|V〉2), (2.20)

|Φ−〉 =
1√
2
(|H〉1|H〉2 − |V〉1|V〉2), (2.21)

|Ψ+〉 =
1√
2
(|H〉1|V〉2 + |V〉1|H〉2), (2.22)

|Ψ−〉 =
1√
2
(|H〉1|V〉2 − |V〉1|H〉2), (2.23)

where the subscripts, 1 and 2 represent the subsystems. Each of four states is also called

an EPR pair. These states are related with local unitary operations as follows:

|Φ+〉 = (I ⊗ σz)|Φ−〉 = (I ⊗ σx)|Ψ+〉 = (I ⊗ (σzσx))|Ψ−〉. (2.24)

2.2.2 Concurrence

In this subsection, we introduce concurrence, which is useful in determining the amount

of entanglement in a bipartite system [54]. The concurrence is defined as the fidelity of a

given state to its spin-flipped counterpart. For a pure state of a single qubit after the spin

flip, the state is defined as

| χ̃〉 = σy|χ∗〉, (2.25)

where |χ∗〉 is the complex conjugate of |χ〉 and σ̂y expressed in that same basis is the

matrix

 0 −i

i 0


 . (2.26)
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For example, the spin-flipped state of a general state ρ of two qubit is

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (2.27)

For a pure state of two qubits, we obtain the concurrence C as

C = |〈χ | χ̃〉|. (2.28)

The function for calculating entanglement of formation (EOF) is given by

EF(C) = h
(1 +

√
1− C2

2

)
, (2.29)

where h(x) = −xlog2x − (1 − x)log2(1 − x). EF(C) is monotonically increasing, and it

ranges from 0 to 1 as C goes from 0 to 1. For a Bell state, both C and EF(C) are equal to

1. For an unentangled pure state, C and EF(C) are equal to zero. For a mixed state ρ, the

concurrence is obtained by

C(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (2.30)

where λj’s are the eigenvalues of ρρ̃, and λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0. The entanglement of

formation is then given by

EF(ρ) = h
(1 +

√
1− C2(ρ)

2

)
. (2.31)

2.2.3 Peres-Horodecki criterion

In 1996, Peres [55] proved that a necessary condition for the separability of a state is the

positivity of its partial transposition (PPT). Horodecki et al. [56] then gave the necessary

and sufficient condition of the separability for 2× 2 (bipartite two-level system-qubit) and

2 × 3 (bipartite three-level system-qutrit) systems. However, in general case, it is noted

that the PPT of the state is not always a sufficient condition for the separability of a state.

For example, there exists entangled states which are PPT. Such states are referred to as

bound entangled states (BES) [66].
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2.3 Multipartite entanglement

Compared to entanglement in bipartite systems, multipartite entanglement is complex and

difficult to understand. In this section, we review the classification and detection of entan-

glement in multipartite systems. In particular, we focus on the classification of tripartite

entanglement and its detection using entanglement witness.

2.3.1 Classification of tripartite entanglement

It is known that entanglement cannot increase under local operations and classical com-

munication (LOCC). This does not mean that when two states have the same amount of

entanglement, they can necessarily be converted into one another via LOCC. If two states

cannot be converted into each other via LOCC, it is interpreted that these two states belong

to different classes or they are inequivalent.

In 2000, Dür et al. [58] proved that there are six equivalence classes for pure states of

three qubits via stochastic LOCC (SLOCC). Their idea behind this classification is that a

three-qubit state | a〉 can be locally converted into another three-qubit state | b〉 with a non

zero probability iff there exists an invertible local operator (ILO) A⊗B ⊗ C such that

| a〉 = A⊗B ⊗ C| b〉. (2.32)

This implies that the states | a〉 and | b〉 are equivalent under SLOCC if an ILO relating

them exists. The classification is shown in Figure 2.3 (a). The classes consist of one

completely separable state (A-B-C), three biseparable states where two qubits are entangled

but separated from the third one (A-BC, C-AB and B-AC), two genuine tripartite entangled

states, namely GHZ- and W- type states. The GHZ and W states for polarization entangled

photons are represented as

|GHZ3〉 =
1√
2
(|H〉|H〉|H〉+ |V〉|V〉|V〉) (2.33)

and

|W3〉 =
1√
3
(|H〉|H〉|V〉+ |H〉|V〉|H〉+ |V〉|H〉|H〉). (2.34)
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Figure 2.3: (a) The classification of pure states. Its classification consists of three

hierarchies: Genuinely tripartite entangled states (GHZ-type states and

W-type states), biseprable states (A-BC and its permutations) and sep-

arable states (A-B-C). (b) The classification of mixed states. It starts

from the smallest class consisting of convex combinations of separable

state (S), and adds the class of biseparable states(B) and W-type states

(W). Finally the class of GHZ-type states includes all embedded sub-

classes.

The distinction between these two types of entanglement becomes clearer if we consider their

generalizations to the N -qubit case: |WN〉 = |N − 1, 1〉/√N and |GHZN〉 = (|N, 0〉 +

| 0, N〉)/√2 where |N − k, k〉 is the sum over all the terms with N − k modes in |H〉 and

k modes in |V〉. In |WN〉, every pair of qubits are entangled with each other directly,

namely, the pairwise entanglement survives even after the rest of the qubits are discarded

[28, 29, 59]. In fact, it was shown that the state |WN〉 has the maximum amount of

such pairwise entanglement shared by every pair [28]. It looks as if forming a web-like

structure in which every qubit has a bond with every other qubit. On the other hand, the

entanglement in |GHZN〉 is sustained by all of the N qubits, and loss of only one particle
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destroys the entanglement completely. But if access to every qubit is allowed, it shows a

maximal violation of local realism [60].

On the other hand, the classification for mixed states introduced by Aćın et al. [61] is

different from that for pure states in a generalization of the SLOCC. This classification is

shown in Figure 2.3 (b). The class of separable states (A-B-C) contains all states that can

be decomposed as a convex combination of pure separable states. The class of biseparable

mixed states (A-BC, C-AB and B-AC) is formed by all states that can be expressed as a

convex combination of separable or any kind of biseparable states. Convex combinations

of states from separable states, biseparable and pure W-type states constitute the class of

mixed W-type states. Finally, the class of GHZ-type states includes all physical three-qubit

states.

2.3.2 Entanglement witness

A tool for detection of entanglement is the entanglement witness that is an hermitian

operatorW detecting the entangled state ρe. All of separable states ρsep satisfy Tr[Wρsep] ≥
0. Tr[Wρe] < 0 is satisfied by at least one entangled state ρe. If a negative expectation

value of W is observed for a state ρ, it clearly shows that ρ is entangled.

A witness operator that detects genuine multipartite entanglement around a pure state

|φ〉 is given by

W = α1− |φ〉〈φ |, (2.35)

where 1 is the identity operator, and α is calculated by

α = max
|ψb〉∈B

|〈ψb |φ〉|2, (2.36)

with B denoting the set of biseparable states. This guarantees that Tr[Wρb] ≥ 0 for all

biseparable states ρb, and that Tr[Wρe] < 0 for at least one entangled state. Thus, a

negative expectation value of the observable W clearly signifies that the state is entangled.

For tripartite entanglement, the generic witness [62, 63] that detects states close to
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|GHZ3〉 is given by

WGHZ =
3

4
1− |GHZ3〉〈GHZ3 |, (2.37)

and one of generic W3 witness is given by

WW =
2

3
1− |W3〉〈W3 |. (2.38)

Expectation values of the above witness operators are positive for biseparable states in-

cluding the fully separable states and negative for at least one states belonging to the GHZ

and W states respectively.



Chapter 3

Engineering and measurement with

polarization entangled photons

In this chapter, we review tools in linear optical quantum processing. In Sec. 3.1, We start

with the creation of photon pairs from spontaneous parametric down conversion (SPDC).

In Sec. 3.2, we then introduce entangled photon pair generation from SPDC. In Sec. 3.3 and

Sec. 3.4, we introduce birefringent crystals and beamsplitters which are basic elements in

linear optics. Finally, in Sec. 3.5, we will give a quantum state tomography and introduce

a maximally likelihood method for reconstructing physical density matrix.

3.1 Spontaneous parametric down conversion

A photon pair cannot be generated by a linear effect. However, it is possible to prepare

photon pairs using spontaneous parametric down conversion (SPDC) with a second order

nonlinear effect. When a strong pump beam with wavenumber k and frequency ω is incident

to a nonlinear crystal such as β-barium borate (BBO), photon pairs are probabilistically

generated in a signal and an idler mode when the phase matching conditions determined

29
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Pump Pump

Figure 3.1: Photon pair generation by spontaneous parametric down conversion

(SPDC) process. (a) In Type I process, a generated signal and idler

photons have the same polarization which is orthogonal to the polar-

ization of the pump field. (b) In Type II, signal and idler photons are

orthogonally polarized to each other.

by

k = ks + ki

ω = ωs + ωi (3.1)

are satisfied. In Eq. (3.1), ks and ki are the wavenumbers, and ωs and ωi are the frequencies

of the photons in the signal and idler modes, respectively. Vacuum component, that is no

photon pair generation, occurs with the highest probability dominating the output of the

SPDC process; and hence the probability of a photon pair generation is low. Although

the probability is much smaller, there may exist cases where multiple-photon pairs are

generated. Multiple-photon pair generation can be reduced by using a low intensity pump

field with the cost of reduced one-photon pair generation rate.

There are two types of SPDC process: In Type I process, the generated signal and idler

photons have the same polarization which is orthogonal to the polarization of the pump

field [see fig. 3.1 (a)]. In Type II process, on the other hand, the signal and idler photons

are orthogonally polarized to each other [see fig. 3.1 (b)].
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Figure 3.2: Entangled photon pair generation from SPDC. Photon pairs in mode 1

and 2 are generated on stacked nonlinear crystals (CH and CV). PR is

a polarization rotator and PS is a phase shifter.

3.2 Entangled photon pair generation

In 1999, Kwiat, et al. [64] demonstrated a simple scheme of entangled photon pair gen-

eration using a non-linear crystal, which is formed by stacking together two Type I phase

matched β-barium borate (BBO) crystals with their optical axes orthogonal to each other.

In our experiment, we use this photon pair generation scheme for photon pair generations.

The setup of a photon pair generation scheme is shown in Fig. 3.2. When a V-polarized

pump is incident on this BBO, the H-polarized photon pairs are generated. The generated

state is written as

|Ψ〉12 =
√

g(| vac〉12 + γeiφp | 1H〉1| 1H〉2 + γ2e2iφp| 2H〉1| 2H〉2 . . .), (3.2)

where subscripts 1 and 2 denote the spatial mode of each output after SPDC, | vac〉 stands

for the vacuum state, g = 1 − γ2, and γeiφp is proportional to the complex amplitude

of the pump field. On the other hand, when arbitrarily polarized pump controlled by

a polarization rotator (PR) and a phase shifter (PS) is incident on this BBO, entangled

photon pairs are generated. The generated state is given by

|Ψ〉12 =
√

g1(| vac〉12 + γeiφp|Λ0〉12 + γ2e2iφp|Λ1〉12 . . .), (3.3)

where α and β are complex numbers satisfying |α|2 + |β|2 = 1, |Λ0〉12 = α| 1H〉1| 1H〉2 +
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β| 1V〉1| 1V〉2, and |Λ1〉12 = αβ| 1H1V〉1| 1H1V〉2 +β2| 2V〉1| 2V〉2 +α2| 2H〉1| 2H〉2 is unnormal-

ized, and g1 = (1−γ2|α|2)(1−γ2|β|2). For example, when α and β are 1/
√

2, The generated

state is given by

|Ψ〉12 =
√

g1(| vac〉12 + γeiφp|Λ0〉12 +
1

2
γ2e2iφp|Λ1〉12 . . .), (3.4)

where |Λ0〉12 = (| 1H〉1| 1H〉2+| 1V〉1| 1V〉2)/
√

2, and |Λ1〉12 = | 1H1V〉1| 1H1V〉2+| 2V〉1| 2V〉2+
| 2H〉1| 2H〉2, and g1 = (1− γ2/2)2.

3.3 Wave plates

In linear optics, unitary operations on a single qubit encoded on the polarization degree of

freedom of a single photon can be easily implemented by using birefringent crystals such as

half wave plates (HWP) and quarter wave plates (QWP). These plates are used to change

the polarization state of light. If the plane of polarization of the incident light is at an

angle θ with respect to the fast axis of HWP, the incident light polarization will rotate

through an angle of 2θ after passing through the HWP. For example, setting θ = π/4 will

rotate an H-polarized incident light to V-polarized light. Setting θ = π/8 will rotate an

H-polarized incident light to a diagonally polarized light. Setting θ = π/2 will induce a

π-phase shift on the V-polarized light. Quarter wave plates, on the other hand, are used to

turn linearly-polarized light into circularly polarized light. This can be achieved by sending

the incident light at an angle of π/4 to the slow or fast axis of the QWP. Conversely, a

circularly polarized light is converted to a linearly polarized light by a QWP.

3.4 Beamsplitters

In order to make joint or single operations on photon pairs, we often use a beamsplitter

[see Fig. 3.3 (a)]. The transformation of a general beamsplitter (BS) is written as

â†1 =
√

1− µ â†3 −
√

µ â†4

â†2 =
√

µ â†3 +
√

1− µ â†4, (3.5)
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Figure 3.3: Schematic diagram of (a) a general beamsplitter (BS) and (b) a quantum

parity checking gate using a polarizing beamsplitter with a discriminat-

ing detector (D). Input modes are 1 and 2, and output modes are 3 and

4.

where â†j denotes the creation operator of mode j. µ and 1 − µ are the transmission and

the reflection coefficient, respectively. Subscripts 1 and 2 are the input modes, and sub-

scripts 3 and 4 are the output modes. A beamsplitter can be designed to have polarization

dependent or independent transmission and reflection coefficients. In particular, we often

use a polarizing beamsplitter (PBS) and a 50:50 beamsplitter in linear optical experiments.

A PBS has the property that completely transmit H-polarized photons and totally reflect

V-polarized photons. A 50:50 BS is represented from Eq. (3.5) as follows;

â†1 =
1√
2

â†3 −
1√
2

â†4

â†2 =
1√
2

â†3 +
1√
2

â†4. (3.6)

Here we show an example of application using a polarizing beamsplitter. In 2001,

Pittman et al.[47] proposed a quantum parity checking gate [see fig. 3.3 (b)]. The gate is

composed of a polarizing beamsplitter (PBS) and a polarization discriminating detector(D).

This discriminating detector is composed of a HWP, a PBS and two photondetectors and

enables the measurements in the diagonal polarization bases |D〉 = (|H〉 + |V〉)/√2 and
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| D̄〉 = (|H〉 − |V〉)/√2. The operation of the gate counts the photon number in the mode

3: When the two inputs are both H-polarized photons (V-polarized photons), the detector

in mode 3 detects one H-polarized photon (one V-polarized photon), resulting in an H-

polarized photon (a V-polarized photon) in mode 4. When the inputs are an H-polarized

photon in mode 1 and a V-polarized photon in mode 2, the detector in mode 3 detects no

photons, resulting in an H-polarized photon and a V-polarized photon in mode 4. When

the inputs are a V-polarized photon in mode 1 and an H-polarized photon in mode 2, the

detector in mode 3 detects both of the H-polarized photon and the V-polarized photon,

resulting in zero photon in mode 4.

3.5 Quantum state tomography and maximum likeli-

hood estimation

(i) Quantum state tomography

Quantum state tomography is used to obtain a complete density matrix of a quantum

state from measured data. From a decomposition of the density matrix into projectors

one can easily express the density matrix in terms of probabilities for detecting a certain

coincidence. Relative frequencies obtained in a measurement are subject to poissonian

counting statistics caused by slight deviations from the real probabilities. Therefore, the

estimated density matrices are not necessarily physical. In such a case, maximum likelihood

estimation (MLE) approach is employed. With MLE, it becomes possible to construct a

physical density matrix which gives the closest counting statistics to those obtained in the

experiments.

An n-qubit state can be characterized by a density matrix which is written by

ρ =
1

2n

3∑
i1,i2,··· ,in=0

ri1,i2,··· ,inσi1 ⊗ σi2 ⊗ · · · σin (3.7)

where the 4n parameters ri1,i2,··· ,in are real numbers and {σ0 = I, σ1 = σx, σ2 = σy, σ3 = σz}.
The normalization property of the density matrices requires that r0,0,··· ,0 = 1, and so the
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density matrix is specified by 4n − 1 real parameters. The values of ri1,i2,··· ,in can be calcu-

lated from the expectation values obtained from the measurement of various combinations

of pauli operators, {I, σx, σy, σz}. Then we obtain density matrix ρ.

James et al. [65] discussed tomographic sets for polarization qubits and showed how to

generally deduce the density matrix from measurement data when a certain tomographic

set is available.

Using polarization states, {I, σx, σy, σz} are represented by

I =


 1 0

0 1


 = |H〉〈H |+ |V〉〈V | = |D〉〈D |+ | D̄〉〈D̄ | = |L〉〈L |+ |R〉〈R |,

σx =


 0 1

1 0


 = |H〉〈V |+ |V〉〈H | = |D〉〈D | − | D̄〉〈D̄ | = i(|R〉〈L | − |L〉〈R |),

σy =


 0 −i

i 0


 = −i|H〉〈V |+ i|V〉〈H | = i(|D〉〈D̄ | − | D̄〉〈D |) = |L〉〈L | − |R〉〈R |),

σz =


 1 0

0 −1


 = |H〉〈H | − |V〉〈V | = |D〉〈D̄ |+ | D̄〉〈D | = |R〉〈L |+ |L〉〈R |,

(3.8)

where {|H〉, |V〉, |D〉, | D̄〉, |R〉, |L〉} is given by

|H〉 =


 1

0


 , |V〉 =


 0

1


 ,

|D〉 =
1√
2


 1

1


 , | D̄〉 =

1√
2


 1

−1


 ,

|L〉 =
1√
2


 1

i


 , |R〉 =

1√
2


 1

−i


 . (3.9)

Here we define the operator for projection measurement as |ψν〉〈ψν |. For example, for

a two-qubit case, we can define the operator by |ψ1〉 = |HH〉12, |ψ2〉 = |HV〉12, |ψ3〉 =

|VV〉12, |ψ4〉 = |VH〉12, |ψ5〉 = |RH〉12, |ψ6〉 = |RV〉12, |ψ7〉 = |DV〉12, |ψ8〉 = |DH〉12,
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|ψ9〉 = |DR〉12 , |ψ10〉 = |DD〉12, |ψ11〉 = |RD〉12, |ψ12〉 = |HD〉12, |ψ13〉 = |VD〉12,

|ψ14〉 = |VL〉12, |ψ15〉 = |HL〉12, |ψ16〉 = |RL〉12.

In optical experiments, for n-photon states, measurements are performed by the coinci-

dence detection. The average number of coincidence counts that will be observed in a given

experimental run is

nν = N〈ψν |ρ|ψν〉 (ν = 1, 2, · · · , 4n) (3.10)

where ρ is the density matrix describing the ensemble of qubits, and N is a constant

dependent on the photon flux and detector efficiencies.

The mapping for the tomograhic reconstruction of the density matrices is given by

ρ =

∑4n

ν=1 Mνnν

N , (3.11)

where the value of the unknown parameter N in experiments is given by

N =
2n∑

ν=1

Tr[Mν ]nν . (3.12)

The set of Mν is given by

Mν =
4n∑

ν=1

(B−1)ν,µΓµ. (3.13)

where Γµ is a 2n × 2n matrix in a set of 4n linearly independent 2n × 2n matrices {Γµ},
constructed from pauli matrices as in Eq. (3.7). Bν,µ is 4n × 4n matrix given by Bν,µ =

〈ψν |Γµ|ψν〉.

(ii) Maximum likelihood estimation

Density matrices for all physical states ρ must have the property that all of the eigenvalues

must lie in the interval [0, 1] and their sum being equal to 1. However, the density matrices

reconstructed from sets of data obtained by linear tomography often violate this condition.

To avoid this problem, the maximum likelihood (ML) estimation of density matrices is used

[66, 67, 68, 69].
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The probability of obtaining the outcome | yi〉 when the state ρ is measured, is given by

pj = 〈yj |ρ| yj〉, (3.14)

where
∑

j | yj〉〈yj | = I. The empirical probability calculated from measurement data in a

experiment is defined as fj given by

fj =
nj∑
j nj

, (3.15)

where nj is a count obtained by measurement in the experiment and
∑

j nj is a total count

obtained by all of measurement in the experiment. Then the likelihood function is defined

as

L(ρ) =
∏

j

〈yj |ρ| yj〉fj , (3.16)

which should be maximized over ρ. One of methods for obtaining the maximum of the

likelihood function is to use an iterative algorithm.

The density matrix can be parameterized as

ρ =
∑

k

rk|φk〉〈φk |, ρ|φk〉 = rk|φk〉, (3.17)

where rk are eigenvalues of ρ. Keeping the normalization condition Tr[ρ] = 1 satisfied,

maximization conditions is defined by

∂

∂rk

[ln L(ρ)− ΛTr[ρ]] = 0, (3.18)

∂

∂|φk〉 [ln L(ρ)− ΛTr[ρ]] = 0, (3.19)

where Λ is Lagrange multiplier. When ln L(ρ) is maximized with a diagonal matrix ρ,

Rρ = ρR = ρ is satisfied, where the operator R is defined by

R =
∑

j

fj

pj

| yj〉〈yj |. (3.20)

This operator R, which is generally referred to as the update operator, depends on the

old density matrix. To maximize the likelihood, the operation, ρ(l+1) = R(l)ρ(l) is done
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Figure 3.4: Flowchart of iterative maximum likelihood (IML) estimation for density

matrices.

repeatedly until the condition ln Ll+1 − ln Ll < ε is satisfied [see Fig. 3.4]. Here, when ρ is

not a diagonal matrix, this operation can be done by replacing ρ(l+1) = R(l)ρ(l) by ρ(l+1) =

N [R(l)ρ(l)R(l)] where N is a normalization constant. It is noted that when
∑

j | yj〉〈yj | 6= I,

maximization can be done by R → G−1/2RG−1/2 where G ≡ ∑
j | yj〉〈yj |/

∑
j pj.



Chapter 4

Local expansion and fusion of a

multipartite W state

In this chapter, we propose two local expansion schemes and one fusion scheme for photonic

W states. In Sec. 4.1, we propose a simple probabilistic optical gate to prepare and expand

polarization entangled W states. The gate uses one polarization-dependent beamsplitter

(PDBS) and a horizontally polarized single photon as an ancilla. The gate post-selectively

expands N -photon W states to (N + 1)-photon W states. In Sec. 4.2, we introduce an

elementary optical gate for preparing and expanding polarization entangled W state using

commercial 50:50 beamsplitters, which have no polarization dependence. The gate is com-

posed of a pair of 50:50 beamsplitters and a phase shifter, and it requires a two-photon

ancillary state. When the input is a photon from an N -photon W state, the gate produces

an (N + 2)-photon W state for post-selected events. Moreover, we show that this gate can

be used to prepare and expand GHZ states by a simple modification of the ancillary state.

In Sec. 4.3, we propose a fusion gate for two arbitrary W states. The operation of this

gate corresponds to parity checking. The gate is composed of a polarizing beamsplitter

(PBS), three half wave plates (HWP) and two polarization discriminating detectors. The

gate post-selectively fuses N - and M -photon W states to prepare a (N + M − 2)-photon

W state. In Sec. 4.4, we give a brief summary and conclusions.

39
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4.1 Local expansion of photonic W state using a po-

larization dependent beamsplitter

This section is organized as follows: In Sec. 4.1.1, we describe the principles of the gate

operation. Sec. 4.1.2 includes a discussion of how this basic gate structure can be used

to expand any polarization entangled W state. In Sec. 4.1.3, we give a scheme for the

experimental realization of this gate and carry out a feasibility analysis under realistic

conditions. Finally, in Sec. 4.1.4, we give a brief summary and conclusions.

4.1.1 Working principle of W state expansion

The details of the proposed gate are shown in Fig. 4.1 (a). The key component in this gate

is the PDBS whose reflection and transmission coefficients depend on the polarization of

the input light. The action of a PDBS for H-polarized photons and V-polarized photons

can be written as

â†1H =
√

1− µ â†3H −
√

µ â†4H, â†2H =
√

µ â†3H +
√

1− µ â†4H, (4.1)

and

â†1V =
√

1− ν â†3V −
√

ν â†4V, â†2V =
√

ν â†3V +
√

1− ν â†4V (4.2)

where â†jH (â†jV) denotes the creation operator of H (V)-polarized photon in the j-th mode

of PDBS, and µ (ν) is the transmission coefficient for H (V)-polarization. The gate uses

an H-polarized photon as the ancilla in mode 2, and a photon in mode 1 with an arbitrary

polarization as the input. The successful operation of the gate is signalled by a coincidence

detection which occurs when there is one photon in each of the output modes 3 and 4. In or-

der to understand the working principle of this gate for W-state preparation and expansion,

it is enough to consider its action on two possible cases: | 1H〉1| 1H〉2 = â†1Hâ†2H| vac〉12 and

| 1V〉1| 1H〉2 = â†1Vâ†2H| vac〉12, where | vac〉 stands for the vacuum state. Using the relations

given in Eqs. (4.1) and (4.2) for the PDBS, we find that these input states are transformed
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Figure 4.1: (a) The optical gate proposed for the local expansion of W states. The

gate uses a polarization-dependent beamsplitter (PDBS), a half wave

plate (HWP) and a horizontally (H) polarized single-photon as an ancilla

in input mode 2. The photon in the input mode 1 comes from the W

state to be expanded. (b) An example of expansion of state |W2〉 to

state |W3〉.

into

| 1H〉1| 1H〉2 →
√

2µ(1− µ) | 2H〉3| 0〉4+(1− 2µ)| 1H〉3| 1H〉4 −
√

2µ(1− µ) | 0〉3| 2H〉4,
(4.3)

and

| 1V〉1| 1H〉2 →
√

µ(1− ν) | 1V1H〉3| 0〉4 +
√

(1− ν)(1− µ) | 1V〉3| 1H〉4
−√µν | 1H〉3| 1V〉4 −

√
ν(1− µ) | 0〉3| 1V1H〉4. (4.4)

In the above equations, only the underlined terms lead to successful gate operation and we

will focus only on those terms. It is seen that when the input photon is in V-polarization, the

coincidence detection will postselect the state
√

(1− ν)(1− µ) | 1V〉3| 1H〉4−√µν | 1H〉3| 1V〉4
which is an EPR pair if the PDBS parameters are chosen such that µ+ν = 1. This implies

that this gate works as an “entangling gate”. The probability of this event is 2µν.
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Next, let us assume that we have an EPR pair in modes 0 and 0′ given as |W2〉 =

(| 1V〉0| 1H〉0′ + | 1H〉0| 1V〉0′)/
√

2. If the photon in mode 0′ is input to mode 1 of the gate

[see Fig. 4.1 (b)], a triple coincidence at modes 0, 3 and 4 will postselect the state

1√
2
[(1− 2µ)| 1V〉0| 1H〉3| 1H〉4 +

√
(1− ν)(1− µ) | 1H〉0| 1V〉3| 1H〉4

−√µν | 1H〉0| 1H〉3| 1V〉4]. (4.5)

If the weights of the components of this superposition state in Eq. (4.5) are made equal,

then Eq. (4.5) will be of the form |W3〉 except a π-phase shift which can be compensated

using a HWP in mode 4. The equalization of the weights occurs when

1− 2µ =
√

(1− ν)(1− µ) =
√

µν. (4.6)

Second equality in Eq. (4.6) imposes the condition µ + ν = 1 which is the same condition

obtained above for EPR pair preparation. Solving the remaining equalities under the con-

dition µ + ν = 1, we find that one should choose µ = (5 − √5)/10 and ν = (5 +
√

5)/10.

Inserting these values of µ and ν into Eqs. (4.3) - (4.4), and imposing the coincidence

detection, we find that the successful gate operation is characterized by the following trans-

formations

| 1H〉1| 1H〉2 → 1√
5
| 1H〉3| 1H〉4,

| 1V〉1| 1H〉2 → 1√
5
| 1V〉3| 1H〉4 +

1√
5
| 1H〉3| 1V〉4, (4.7)

where we have included the effect of the HWP in mode 4. Putting all together, we conclude

that this gate can prepare the EPR pair |W2〉 with a probability of 2/5 starting with a V-

polarized photon in mode 1, and the |W3〉 state with a probability of 3/10 starting with the

EPR pair |W2〉 in modes 0 and 0′. This success probability for |W3〉 state preparation is a

significant improvement over other linear optics schemes existing in the literature. Among

the previously proposed schemes, the one in Ref. [45] has the highest success probability

given as 1/9 which is less than that of the present scheme.
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4.1.2 Expansion of polarization entangled W states

We show that the same gate can be used to prepare and expand arbitrary W states. In the

following, we will represent an N -partite W state |WN〉 as

|WN〉 = [| (N − 2)H, 1V〉e1 ⊗ | 1H〉1 + | (N − 1)H, 0V〉e1 ⊗ | 1V〉1] /
√

N, (4.8)

where the subscript 1 denotes the spatial mode of the photon that is input to the gate and

1̃ denotes the remaining N − 1 modes of |WN〉, and | lH, kV〉 is the sum over all the terms

with l modes in |H〉 and k modes in |V〉. Using this notation, the transformation in Eq.

(4.7) can be represented as | 1H〉1| 1H〉2 →
√

1/5| 2H, 0V〉 and | 1V〉1| 1H〉2 →
√

1/5| 1H, 1V〉.
Thus, we find that upon the selection of the successful events, the action of the gate is given

as

| (N − 2)H, 1V〉e1| 1H〉1 → 1√
5
| (N − 2)H, 1V〉e1 ⊗ | 2H, 0V〉,

| (N − 1)H, 0V〉e1| 1V〉1 → 1√
5
| (N − 1)H, 0V〉e1 ⊗ | 1H, 1V〉. (4.9)

Using these relations, it is straightforward to show that the successful gate operation

performs the following transformation on an initial |WN〉:

|WN〉 → 1√
5N

[| (N − 2)H, 1V〉e1 ⊗ | 2H, 0V〉+ | (N − 1)H, 0V〉e1 ⊗ | 1H, 1V〉]

=

√
N + 1

5N
|WN+1〉. (4.10)

Thus we conclude that the gate expands a given W state |WN〉 to |WN+1〉 by one photon

with a success probability of (N+1)/5N . The success probability will approach the constant

1/5 when N becomes large. This analysis clearly shows that the proposed gate can be used

in two different ways: (i) A given arbitrary-size W state |WN〉 can be expanded by one at

each successful operation of the gate which takes place with the probability (N + 1)/5N ,

e.g., a probability of 4/15 for the expansion of |W3〉 to |W4〉, and (ii) starting from a V-

polarized input photon, an arbitrary-size W state can be prepared by cascade application

of the gate. For example, cascading k of this gate will prepare the state |Wk+1〉 with a

probability of (k + 1)5−k.
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4.1.3 Practical considerations for preparing W3 state

We introduce an experimental scheme for the implementation of this gate to expand the

EPR pair |W2〉 to the three-photon W state |W3〉, and discuss the effects of realistic

conditions on the performance of the gate. We will focus on the effects of imperfections

in (a) the preparation of the state |W2〉 and the ancillary state, | 1H〉, (b) the detection of

the successful events, and (c) the deviations of the parameters of PDBS from its optimal

values.

(a) Basic scheme

We propose the scheme given in Fig. 4.2 for the practical implementation of the proposed

gate. In this scheme, the output of a pulsed laser (PL) with angular frequency ω0 in the

visible range of the spectrum is frequency doubled in a nonlinear crystal to produce pulses

of ultraviolet (UV) light of angular frequency 2ω0. These UV pulses are then used to pump

twice in forward and backward directions a pair of nonlinear crystals, which are stacked

together such that their optical axes are orthogonal to each other [64]. The crystals are for

Type I spontaneous parametric down conversion (SPDC) to produce photon pairs in two

modes (idler and signal) with the same polarization and at half the frequency of the pump

beam. In the forward pumping direction, the polarization of the UV beam is set to vertical

so that an H-polarized photon pair in modes 2 and 2′ are generated from which the required

ancillary state | 1H〉 in mode 2 can be prepared. The remaining (non-down-converted)

portion of the UV beam first passes through a quarter wave plate (QWP) which changes its

polarization into an ellipsoidal polarization. A mirror placed after the QWP back-reflects

this beam and sends it through the QWP again which further changes the polarization of

the beam into diagonal polarization. This diagonally polarized beam pumps the crystals in

the backward direction creating the entangled photon pair (| 1H〉0| 1H〉0′ + | 1V〉0| 1V〉0′)/
√

2.

Changing the polarization of the photon in the mode 0 (idler) of the SPDC output will

prepare the |W2〉 in the spatial modes 0 and 0′. Then the ancillary photon in mode 2

and the photon in mode 1 of |W2〉 are combined at the PDBS. The successful events are
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Figure 4.2: Experimental setup for realizing the proposed gate. PL, pulsed laser;

SHG, second harmonic generator; Type I BBO, phase matched β-barium

borate crystal for spontaneous parametric down conversion (SPDC);

PDBS, polarization dependent beamsplitter; Dj, photondetectors; QWP,

quarter-wave plate; HWP, half-wave plate; F, narrow-band interference

filter; M, mirror.

selected by a four-fold coincidence detection by ON/OFF detectors placed at the modes

0, 2′, 3 and 4 as seen in Fig. 4.2. In order to have a high fidelity, it is crucial that the

information on the source of the photons in modes 3 and 4 is erased. This can be done

by placing narrowband interference filters, whose coherence times are much longer than

the duration of the pump pulse, in front of the detectors [70, 71]. Indistinguishability of

these photons can be further enhanced by spatial filters, which can be implemented using

single-mode fiber-coupled photodetectors. It is to be noted that there is a trade-off between

the indistinguishability and the success probability. The tighter is the spectral and spatial

filtering the higher is the indistinguishability and hence the fidelity, but the lower is the

efficiency. In the following analysis of the effects of imperfections in photon generation,

photon detection and the PDBS on the performance of the gate, we assume for the sake of
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simplicity that the photons are perfectly matched and they are indistinguishable.

(b) Effects of SPDC and imperfect detection

Imperfections in the photon detectors affect the gate in two ways: (i) Recording some of

the successful events as the failure due to non-unit quantum efficiency, and (ii) reporting

some of the failures as the successful ones due to dark counts and/or due to the fact that

detectors cannot resolve the photon number. In the following, without loss of generality,

we neglect the errors due to dark counts. This is acceptable as the dark counting rates

of current detectors are very low [72]. Moreover, the requirement of four-fold coincidence

detection in our scheme significantly reduces the probability of false events caused by dark

counts. Neglecting the dark counts, the positive operator valued measure (POVM) elements

for ON/OFF photondetectors become

Π0 =
∞∑

m=0

(1− η)m|m〉〈m |, (4.11)

Π1 = 1− Π0 =
∞∑

m=1

[1− (1− η)m]|m〉〈m |, (4.12)

where Π0 and Π1 are, respectively, the elements for no click (OFF) and for a click (ON)

[71]. Returning back to our gate, we see that if there is only one photon in each of the

modes 1 and 2, then the success probability of detecting one photon in each of modes

3 and 4 becomes 3η4/10. Note that the error due to (ii) occurs when there are more

than one photon in either or both of the modes 3 and 4. This takes place when either

or both of the backward and forward SPDC processes prepare two or more photon pairs.

In practical settings, SPDC suffers from the non-deterministic nature of the process: The

output of the SPDC contains vacuum with high probability and the probability of a photon

pair generation is low. Moreover, although the probability is much lower, there are cases

when multiple pairs of photons are generated. The generated state in the forward direction

becomes

|Ψ〉22′ =
√

g(| vac〉22′ + γeiφp | 1H〉2| 1H〉2′ + γ2e2iφp | 2H〉2| 2H〉2′ . . .), (4.13)
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where g = 1 − γ2 and γeiφp is proportional to the complex amplitude of the pump field.

Assuming that the losses in the forward and backward pumping are negligible, the state in

the backward direction can be written as

|Ψ〉01 =
√

g1(| vac〉01 + γeiφp |W2〉01 +
1

2
γ2e2iφp |Λ〉01 . . .), (4.14)

where |Λ〉01 = | 1H1V〉0| 1H1V〉1 + | 2V〉0| 2H〉1 + | 2H〉0| 2V〉1 is unnormalized and g1 = (1 −
γ2/2)2. Combining the above expressions, we find that four-fold coincidence detection

postselects the state,

|Ψ〉0122′ =
√

gg1[ γ2e2iφp|W2〉01| 1H〉2| 1H〉2′
+γ3e3iφp(|W2〉01| 2H〉2| 2H〉2′ + 1

2
|Λ〉01| 1H〉2| 1H〉2′)] +O(γ4)

=
√

gg1[
1√
2
γ2e2iφp(â†0Vâ†1H + â†0Hâ†1V)â†2Hâ†2′H

+
1

2
√

2
γ3e3iφp(â†0Vâ†1H + â†0Hâ†1V)(â†2H)2(â†2′H)2

+
1

4
γ3e3iφp{2â†0Hâ†0Vâ†1Hâ†1V + (â†0V)2(â†1H)2

+(â†0H)2(â†1V)2}â†2Hâ†2′H]| vac〉0122′ +O(γ4), (4.15)

where we have focused on the terms up to γ3 by considering that in practice, γ2 ∼ O(10−4)

is very small. The PDBS transforms modes 1 and 2 of |Ψ〉0122′ according to the relations

given in Eqs. (4.1) and (4.2). Defining the state after the transformation as |Ψ′〉0342′ and

using POVM given in Eq. (4.12), the four-fold coincidence detection probability pc can be

calculated as

pc = 0342′〈Ψ′ |Π0
1Π

3
1Π

4
1Π

2′
1 |Ψ′〉0342′

=
1

2
gg1γ

4η4[2µ(µ− 1) + 1]
︸ ︷︷ ︸

pt

+
1

2
gg1γ

6η4(2− η)2 +
1

2
gg1γ

6η4(2− η)2[µ(µ− 1) + 1] +O(γ8)
︸ ︷︷ ︸

pf

, (4.16)

where Πj
1 is the POVM for “click” events at the detection in mode j, and pt and pf respec-

tively corresponds to the probability of true and false coincidences. We see in Eq. (4.16)
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two contributions, pt and pf . The true coincidences (pt) are due to the |W2〉01| 1H〉2| 1H〉2′
term in |Ψ〉0122′ and the false coincidences (pf ) originates from multiple pairs of photons.

Plugging the value µ = (5 − √
5)/10 in these terms, we find that the ratio of the true

coincidences to the total coincidence events becomes

p =
pt

pt + pf

= 1− 3γ2(η − 2)2 +O(γ4). (4.17)

It is clearly seen that almost all of the four-fold coincidence detections are true coincidences

within the range of realistic values of η and γ.

(c) Effect of deviation in the PDBS parameter

We consider the effect of deviations in the parameters of PDBS from its ideal values of

µ = (5−√5)/10 and ν = (5 +
√

5)/10 on the probability and the fidelity of expanding the

state |W2〉 into the state |W3〉. Let us assume that the reflection coefficients of PDBS for

H- and V-polarized photons are deviated from the ideal values by δ and ∆, respectively.

Then the action of the imperfect PDBS on H-polarized light and V-polarized light becomes

â†1H =
√

1− µ− δ â†3H −
√

µ + δ â†4H, â†2H =
√

µ + δ â†3H +
√

1− µ− δ â†4H, (4.18)

and

â†1V =
√

1− ν −∆ â†3V −
√

ν + ∆ â†4V, â†2V =
√

ν + ∆ â†3V +
√

1− ν −∆ â†4V, (4.19)

where −µ ≤ δ ≤ ν and −ν ≤ ∆ ≤ µ. Using these expressions, we calculated the probability

of coincidence detection and the fidelity of the output state to the desired one. We omit the

analytic expressions since they are rather lengthy and complicated. Instead, we depict the

constant fidelity and constant probability contours as a function of δ and ∆ in Fig. 4.3. We

see that the effect of δ on the fidelity is much larger than that of ∆. We can thus tolerate

larger deviations from the ideal value for ∆.

4.1.4 Brief discussion

In this section, we have proposed a simple probabilistic optical gate for expanding polariza-

tion entangled W states and analyzed its feasibility taking into account the imperfections
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Figure 4.3: Constant fidelity (left) and constant probability (right) contour plots as

a function of δ and ∆, which are deviations of the parameters µ and ν

of PDBS from their ideal values, respectively.

encountered in practice. The proposed gate expands |WN〉 by one qubit into |WN+1〉
by locally acting on one of its qubits. A remarkable feature of this gate is that starting

with a EPR pair, it can prepare tripartite entangled W state with a success probability of

3/10 which is the highest among all the proposed schemes so far. Moreover, the gate does

not need stabilization of optical paths and does not employ sub-wavelength adjustments.

Our feasibility analysis shows that the proposed gate can be implemented by the current

experimental technologies.

4.2 Local expansion of photonic W state using two

non-polarizing beamsplitters

This section is organized as follows: In Sec. 4.2.1, we give the working principle of the

proposed gate (TW
+2 gate). Sections 4.2.2 and 4.2.3 include, respectively, the use of this gate
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Figure 4.4: Schematic diagram of the proposed elementary optical gate.

in the preparation and expansion of polarization entangled W states, and the feasibility

analysis for |W4〉 preparation. In Sec. 4.2.4, we show that by changing the state of the

ancilla photons, this gate can be used for the expansion of GHZ states, and finally Sec.

4.2.5 will contain a summary of this work.

4.2.1 Working principle of the gate

In Fig. 4.4, we show the schematic of the proposed gate. The gate receives one photon

from mode 1 as the input, and combines it by a 50:50 beamsplitter (BS1) with two ancilla

photons in the state | 2H〉2 where H stands for the horizontal polarization and the subscript

number signifies the spatial mode. One of the output modes of BS1 is further divided into

two modes by another 50:50 beamsplitter (BS2). The gate is successful when one photon is

found in each of the output modes 4, 5, and 6. The phase shifter (PS) placed in mode 4 is

a half-wave plate which introduces a π-phase shift between H and V polarizations to keep

the final W state in the standard symmetric form.

First we analyze the operation of this gate for H-polarized (| 1H〉1) or V-polarized (| 1V〉1)
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seed states in mode 1. The action of the polarization-independent BS1 on H (V) polarization

is represented by the transformation

â†1H(V) = (â†3H(V) − â†4H(V))/
√

2,

â†2H(V) = (â†3H(V) + â†4H(V))/
√

2, (4.20)

where â†jH(V) is the photon creation operator for mode j in H(V) polarization. Using

these relations we find that with the action of BS1, the initial states | 1H(V)〉1 ⊗ | 2H〉2 =

2−1/2â†1H(V)(â
†
2H)2| 0〉 evolve as

| 1H〉1| 2H〉2 →
√

3

2
√

2
| 3H〉3| 0〉4 +

1

2
√

2
| 2H〉3| 1H〉4 − 1

2
√

2
| 1H〉3| 2H〉4

−
√

3

2
√

2
| 0〉3| 3H〉4,

| 1V〉1| 2H〉2 → 1

2
√

2
| 1V2H〉3| 0〉4 +

1

2
| 1H1V〉3| 1H〉4 +

1

2
√

2
| 1V〉3| 2H〉4

− 1

2
√

2
| 2H〉3| 1V〉4 − 1

2
| 1H〉3| 1H1V〉4 − 1

2
√

2
| 0〉3| 1V2H〉4.

(4.21)

The underlined terms, in which there are two photons in mode 3 and one photon in mode

4, are the only ones leading to the successful gate operation. Hence we are interested only

in the underlined terms. The states | 2H〉3 and | 1H1V〉3 appearing in the underlined terms

are transformed at BS2 as

| 2H〉3 → 1

2
| 2H〉5| 0〉6 +

1√
2
| 1H〉5| 1H〉6 +

1

2
| 0〉5| 2H〉6,

| 1H1V〉3 → 1

2
| 1H1V〉5| 0〉6 +

1

2
| 1H〉5| 1V〉6 +

1

2
| 1V〉5| 1H〉6 +

1

2
| 0〉5| 1H1V〉6.

(4.22)

Since successful gate operation requires that there is one photon in each of the modes 4, 5

and 6, it is apparent that only the underlined terms in Eq. (4.22) has contribution. If we

postselect these terms with a coincidence detection scheme, the operation of the gate will
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V

H H H

H H H

H H H

minus sign

Classical

   case

Quantum

   case

output modes 4 5 6 4 5 6

1V 1 2H 2 1H 1 2H 2

Table 4.1: Input-output relation for the intuitive understanding of gate operations.

be given by the following state transformations:

| 1H〉1| 2H〉2 → 1

4
| 1H〉4| 1H〉5| 1H〉6, (4.23)

| 1V〉1| 2H〉2 → 1

4
| 1H〉4| 1H〉5| 1V〉6 +

1

4
| 1H〉4| 1V〉5| 1H〉6

+
1

4
| 1V〉4| 1H〉5| 1H〉6, (4.24)

where we have included the effect of the PS in mode 4. All the four terms appearing in

Eq. (4.23) and Eq. (4.24) have the same amplitude implying that the success probability

is 1/16 for the | 1H〉1 input and 3/16 for the | 1V〉1 input. If the seed photon is a part of

a polarization entangled system, we will have a coherent superposition of the above two

cases. It is interesting to see here that the gate performs a symmetrization among the input

and the ancillary states. The insight into the above equations can be gained as follows [see

Table 4.1]: When the seed is a V-polarized photon, we have a classical situation where

two H-polarized photons are distributed among three output modes in three different ways

and the remaining one port is occupied by the V-polarized photon from the seed. These

three cases are | 1H〉4| 1H〉5| 1V〉6, | 1H〉4| 1V〉5| 1H〉6, −| 1V〉4| 1H〉5| 1H〉6. Note that the last

term with the minus sign corresponds to the situation where there are two H-polarized
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photons at the input of BS2. On the other hand, when the seed is an H-polarized photon,

we have three indistinguishable particles and quantum effects come into play. Contrary

to the expectation with distinguishable particles, we end up with only one term because

the three possible cases to distribute the particles among the output modes correspond

exactly to the same state | 1H〉4| 1H〉5| 1H〉6 with one having a minus sign. This minus sign

leads to destructive interference resulting in only one term, | 1H〉4| 1H〉5| 1H〉6. This is the

important feature of the gate which will be exploited in expanding the symmetrically shared

entanglement in W state.

4.2.2 Expansion of polarization entangled W states

We observe that the expression on the right hand side of Eq. (4.24) corresponds to |W3〉
which implies that the gate prepares polarization entangled |W3〉 state with a success

probability of 3/16 if the seed |W1〉 is a V-polarized single photon. Equations (4.23)

and (4.24) also tell that if the input photon in mode 1 has formed an EPR pair |W2〉 =

(| 1H〉0| 1V〉1 + | 1V〉0| 1H〉1)/
√

2 with another photon in mode 0, the output state for the

post-selected events are given by

|W2〉 → 1

4
√

2
[ | 1H〉0| 1H〉4| 1H〉5| 1V〉6 + | 1H〉0| 1H〉4| 1V〉5| 1H〉6

+| 1H〉0| 1V〉4| 1H〉5| 1H〉6 + | 1V〉0| 1H〉4| 1H〉5| 1H〉6 ]

→ 1√
8
|W4〉, (4.25)

which means that the |W4〉 state is produced with probability 1/8.

The success probability 1/8 for the preparation of |W4〉 is significant improvements

over the other linear optics-based schemes proposed for these states. For instance, the

most efficient schemes so far are those in Ref [44] for |W4〉 with the corresponding success

probability of 2/27 which is lower than that of our proposal. For the preparation of |W3〉,
the success probability 3/10 of our proposed gate in Sec. 4.1 is higher than the success

probability 3/16 of this proposed gate.

If the input photon is from a general W state |WN〉, the application of the gate will
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result in the transformation:

|WN〉 → [| (N − 2)H, 1V〉 ⊗ | 3H, 0〉+ | (N − 1)H, 0〉 ⊗ | 2H, 1V〉]/4
√

N

= |N + 1H, 1V〉/4
√

N, (4.26)

implying that |WN+2〉 is prepared with a success probability of (N + 2)/(16N) where

| lH, kV〉 is the sum over all the terms with l modes in |H〉 and k modes in |V〉. When N

becomes large, the success probability will approach to the constant 1/16.

An interesting feature of this gate is that it can be cascaded to prepare any desired

size of W state. Starting with an input state of | 1V〉1 to the first gate in the cascaded

series of k proposed gates, a 2k+1-photon polarization entangled W state, |W〉2k+1, can be

prepared provided that coincidence detection is observed at 2k + 1 output spatial modes.

The success probability of such an event scales as psuccess = (2k +1)2−4k. Similarly, starting

with a photon from a EPR pair and cascading k gates, one can prepare 2(k + 1)-photon

polarization entangled W state, |W〉2(k+1) with a success probability of psuccess = (k+1)2−4k.

In comparison to the gate proposed in Sec. 4.1, this gate which adds two photons here

tends to have a better success probability of producing a specific W state. For example, For

preparation of |W5〉 from a V-polarized photon. the gate in Sec. 4.1 requires cascading of

four gates and the success probability becomes 5/54 = 1/125. On the ohter hand, this gate

requires cascading of two gates and the success probability is 5/162 = 5/256. In general,

when the number of photons, are large, the gate in Sec. 4.1 needs a cascade of two gates for

addition of two photons, which reduces the success probability by a factor of 1/52 = 1/25.

Wheares this gate which adds two photons reduces the success probability by a factor of

1/16. For the case of starting from an initial state and preparing a desired state, this is the

reason why the proposed gate which adds two photons has a greater advantage than the

proposed gate in Sec. 4.1.

Besides our current proposal, the scheme based on N × N multiport interferometers

[36, 45] is so far the only proposal encompassing generation of |WN〉 with arbitrary N . This

scheme requires a different multiport device for each N . In addition, numerical calculation

up to N = 7 shows that our proposal has better efficiency, e.g., for N = 5 our proposal
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succeeds with a probability 12 times higher than that of the multiport interferometer.

Note also that N × N interferometer cannot generate the |W6〉 state because of the zero

probability of coincidence detection due to destructive interference.

4.2.3 Practical considerations for preparing W4 state

We introduce an experimental scheme for the implementation of this gate to expand the

EPR pair |W2〉 to |W4〉, and discuss the effects of realistic conditions on the performance of

the gate. We will analyze the effects of imperfections in (a) the preparation of the |W2〉 and

the ancillary state, | 2H〉, (b) the detection of the successful events, and (c) the deviations

of the parameters of 50:50 BS from its optimal values.

(a) Basic scheme

So far, several linear optical schemes for preparing the state |W4〉 have been proposed

[44, 45, 46], but no experiments have been done yet. It is thus important to consider the

feasibility of our scheme with practical photon sources, namely, parametric down-conversion

(PDC) and/or weak coherent pulses (WCP) obtained by attenuating laser pulses. We give

a schematic configuration of a possible experimental scheme in Fig. 4.5.

In this scheme, the light from a mode-locked Ti:sapphire laser (wavelength 790nm; pulse

width 90fs; repetition rate 82MHz) is frequency-doubled to a wavelength of 395nm with a

second harmonic generator (SHG) to prepare ultraviolet (UV) light. Then the UV light is

divided into two parts one of which is used to prepare the EPR photon pair and the other

to prepare the H-polarized two-photon ancillary state using spontaneous parametric down

conversion (SPDC). For EPR photon pair generation the polarization of the UV pulse is set

to diagonal polarization, and it is used to pump BBO1, which is formed by stacking together

two Type I phase matched 1.5mm thick β-barium borate (BBO) crystals with their optical

axes orthogonal to each other [64]. For the ancilla state preparation, the UV pulse is set to

vertical polarization and then it is used to pump a Type I BBO2 to prepare two photons in

H-polarization collinearly. Then one photon of the EPR photon pair is sent to the proposed



56

1

2

4

3

6
5

SHG

BBO1

I F

I F

I F

I F

I F

D1

D2

D3

D4

ND

M

BG

BG

BBO2

WCP

S

ATT

BS1

BS2
PL

PS
(HWP )

M M

HWP

Figure 4.5: Schematic configuration of experimental setup for realizing the proposed

gate. PL, pulsed laser; SHG, second harmonic generator; BG, brewster

window; BBO1,2, Type I phase matched 1.5mm thick β-barium borate

crystal for spontaneous parametric down conversion (SPDC); BS1 and

BS2, 50:50 symmetric beamsplitters; PS, phase shifter implemented us-

ing half wave plate (HWP); IF, interference filter with central wavelength

λ = 790nm and full-width at half-maximum bandwidth ∆λ = 2.7nm;

ND, neutral density filter; ATT, optical attenuator; Dj, photodetectors;

M, mirror. The H-polarized two-photon ancilla state can be prepared by

either using SPDC or weak coherent pulse (WCP). When it is prepared

using SPDC, the part of the figure in dashed box is not used, and the

shutter (S) is open. On the other hand, when it is prepared from WCP

then the dashed part will be used and the shutter will be closed.
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gate where it is mixed with the ancilla photons. The correct events are post-selected by a

four-fold coincidence detection at silicon avalanche photodiodes, Dj=1,2,3,4, (EG&G single

photon counting module- SPCM with quantum efficiency ηd ∼ 0.55 and dark count rate 50

count/s).

(b) Imperfect detection

We discuss the effect of imperfections of detectors and the photon source on our scheme.

The errors due to dark counts of the detectors cannot be eliminated even by post-selection,

but the dark count rates of current detectors are pretty low for multi-photon coincidence

measurements (e.g., in a detection window of 2.5ns, there will be 1.25×10−6 count/window),

and thus errors due to them can be neglected [71, 72]. Hence, the errors in the post-selected

state are mainly caused by multi-photon pairs from the SPDC. The probability of correct

events in this scheme is O(η4γ4) where γ2 ∼ 10−4 is the photon pair generation rate per

pulse in a typical SPDC process, and η ∼ 10−1 is the overall system efficiency which takes

into account the detector efficiency and losses due to coupling and optical components [72].

On the other hand, the probability of false events due to generation of excess pairs scales

as O(η4γn) with n ≥ 6. Thus the contribution of false events in the post-selected events is

O(10−4), and hence it can be neglected.

Alternatively, we may also use WCP instead of SPDC for the ancillary photons in mode

2. In this case, the experimental setup will be modified as follows: The light pulses from

Ti:sapphire laser is divided into two unequal parts by a beamsplitter. The stronger portion

will go to SHG to prepare the UV used for EPR photon pair generation at the Type I BBOs.

The weak part will be further attenuated through a combination of HWPs, polarizers and

neutral density (ND) filters to obtain a WCP with mean photon number ν. Then the

desired events occur with a rate O(η4γ2ν2). If we assume that ν ¿ 1, then the main source

of error will be the two-pair production at SPDC which leads to two photons in the input

mode 1. Then even one photon in the WCP will lead to triple coincidence at modes 4, 5,

and 6 with a rate O(η4γ4ν). The contribution of false events in the post-selected events

is O(γ2/ν) so the error is small if γ2 ¿ ν ¿ 1. Another possible case which may lead to
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error is the presence of three photons in WCP while an EPR photon pair is generated at

the SPDC. In that case the fourfold coincidence will occur with the rate O(η4γ2ν3), thus

the contribution of the false events to the post-selected events will be O(ν) which can be

safely neglected if we choose ν ∼ O(10−2).

Mode mismatch, which decreases the fidelity of the prepared states, can be minimized by

proper spectral and spatial filtering as discussed in Ref. [73]. However, this will reflect itself

as reduced rate of post-selected events. Thus, there is a trade-off between the efficiency

and the fidelity.

(c) Effect of deviation in the 50:50 BS parameter

We consider the effect of imperfections in the beamsplitters. We assume that the reflection

coefficients of the beamplitters BS1 and BS2 are deviated from their ideal values of 1/
√

2

by a value of x and y, respectively. Then the action of imperfect BS1 on H (V) polarization

is represented by the transformation:

â†1H(V) =
√

(1− x)/2 â†3H(V) −
√

(1 + x)/2 â†4H(V) (4.27)

and

â†2H(V) =
√

(1 + x)/2 â†3H(V) +
√

(1− x)/2 â†4H(V), (4.28)

where −1 < x < 1. Similar expressions can be written for BS2 by considering the corre-

sponding modes and by replacing x with y where −1 < y < 1. After some straightforward

but lengthy calculations, we find that the fidelity of the prepared state upon a four-fold

coincidence detection becomes

F =
(x + 1)2

3x2 + 2x + 1
, (4.29)

where we see that the fidelity is dependent on the imperfection of only the BS1. On the

other hand, the probability of four-fold coincidence detection which is found as

p =
(1− x)(1− y2)

8(3x2 + 2x + 1)
(4.30)
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Figure 4.6: Effect of deviation in the parameters of beamsplitters (BS) on fidelity

of the prepared W4. Fidelity is dependent only on the error x in BS1

reflection coefficient.

depends on the imperfections of both beamsplitters. This can be simply understood if we

notice that BS1 decides the weight of the components forming the W state: If there is

a deviation from 1/
√

2 in BS1, the superposition will not be equally weighted which will

result in lower fidelity since we accept the events whenever we have a four-fold coincidence.

On the other hand, if BS1 is ideal, then the probability of four-fold detection will be

determined by the imperfections in BS2. The plots of the dependence of fidelity and the

probability of four-fold coincidence are depicted in Figs. 4.6 and 4.7. It is worth noting

here that if we know the amount of imperfection in BS1, we can compensate its effect by

introducing losses on only V-polarized photons. In that case, we can obtain a unit fidelity

state generation but with a lower success probability. For x < 0, the success probability

becomes (1 + 3x)2(1− x)(1− y2)/32; for x > 0 it becomes (1− x)2(1− x)(1− y2)/32.

Putting all together, we conclude that the proposed elementary gate is easy to implement

and feasible with the current experimental technologies.
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Figure 4.7: Effect of imperfect 50:50 beamsplitters (BS) on the probability of four-

fold coincidence detection. Deviations of reflection coefficients of BS1

and BS2 are represented by x and y, respectively.

4.2.4 Expansion of polarization entangled GHZ states

In our proposed gate, a polarization entangled state is prepared or expanded using only

passive polarization-independent components. (The phase shifter PS is used only for the

purpose of making the output state in the standard form.) The polarization dependence

of the gate comes from the polarization of the ancilla photons. This may suggest the

possibility of expanding states other than W states by modifying the polarization of the

ancilla photons. Let us consider the case in which, instead of the H-polarized two-photon

ancilla state | 2H〉2, we choose the state | 1H1V〉2 as the state of the two ancillary photons.

We still require that one photon is present in each of the output spatial modes. As we will

see, it turns out that this modified gate can be used for the expansion of GHZ states.

Suppose that a V-polarized photon is present at the input mode 1. This photon under-

goes two-photon interference at BS1 with the V-polarized photon from the ancilla mode 2,

resulting in either both photons emerging at mode 3 or both photons emerging at mode

4. Since mode 4 must have exactly one photon for the post-selection, only the former case
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leads to the post-selection. In addition, the remaining H-polarized ancilla photon must go

to mode 4. Hence the transformation leading to post-selection is written by

| 1V〉1| 1H1V〉2 → 1

2
√

2
| 1H〉4| 1V〉5| 1V〉6. (4.31)

Similarly, an H-polarized photon at the input is transformed as

| 1H〉1| 1H1V〉2 → 1

2
√

2
| 1V〉4| 1H〉5| 1H〉6. (4.32)

If we rotate the polarization of the photon in mode 4 by π/2, all the photons in the output

modes should have the same polarization as the input, namely,

| 1V〉1| 1H1V〉2 → 1

2
√

2
| 1V〉4| 1V〉5| 1V〉6 (4.33)

and

| 1H〉1| 1H1V〉2 → 1

2
√

2
| 1H〉4| 1H〉5| 1H〉6. (4.34)

From the above discussion, we see that if the input photon is an equal superposition

of H- and V-polarized photons, (| 1H〉1 + | 1V〉1)/
√

2, it will evolve into a superposition

state |GHZ3〉 = (| 1H〉4| 1H〉5| 1H〉6 + | 1V〉4| 1V〉5| 1V〉6)/
√

2 with a success probability of

1/8. Similarly, it transforms any size of GHZ state |GHZN〉 to |GHZN+2〉 with the same

probability. Hence the use of a different polarization state for the two photons in the

ancillary mode enables us to expand a different class of multipartite entangled states. Here

we need to mention that it is already known that a parity check gate with an single-photon

ancilla state will extend GHZ states by one with a probability of 1/2[17, 35, 47]. In order to

extend a GHZ state by 2, the gate should be applied twice leading to an overall probability

of 1/4 which is twice as high as that of our gate.

4.2.5 Brief discussion

In this section, we have proposed an elementary optical gate for both preparing and ex-

panding the symmetrically shared entanglement in polarization entangled W states. It has

a larger success probability than other preparation methods proposed so far [see Table 4.2].
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Scheme Probability Fidelity

Our scheme 1/8 1

X. Zou et al [44] 2/27 1

B. -S. Shi et al [45] 1/16 1

Y. Li et al [46] 3/200 0.985

Table 4.2: Comparison of our scheme and other schemes in the literature for the

preparation of W4. It is seen that our scheme has a higher probability of

success.

We believe that the proposed gate provides an easy-to-implement scheme which is feasible

with the current experimental technologies. In our gate, polarization-dependent compo-

nents play no essential role, and the desired transformation is achieved by multi-photon

interference between the input photon and the ancilla photons. In fact, we were able to

show that just by changing the state of the ancilla photons, the gate can be used for the

preparation and extension of GHZ states.

4.3 Optical fusion gate for two arbitrary-size W states

In this section, we introduce an optical gate to fuse two W states to prepare a larger W

state by accessing only one qubit from each of the input W states. This section is organized

as follows: In Sec. 4.3.1, we introduce the scenario and the basic assumptions. In Sec. 4.3.2,

we describe the structure of the fusion gate. In sec. 4.3.3, we give an example of fusing two

four-photon W states. Finally, in Sec. 4.3.4, we give a brief summary and conclusions.

4.3.1 Working principle of fusion gate for W states

Let us assume that two spatially separated parties, Alice and Bob, decide to merge their

local W states |Wn〉A and |Wm〉B into a larger entangled web |Wγ〉AB with the help of a

trusted third party Claire [see Fig. 4.8]. In order to do this, each of Alice and Bob transmits
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Figure 4.8: Schematic of our concept. Two spatially separated Alice and Bob decide

to merge their small scale W-state networks |WN〉 and |WM〉 into a

larger one |WN+M−2〉 by acting locally on the received two qubits and

communicating classically the outcome to Alice and Bob.

one qubit from his/her W state to Claire who will operate locally on the received two qubits

and inform Alice and Bob whether the task is successful or not. The question is whether

such a local manipulation is possible or not, and if possible then how the operation of Claire

can be realized within the linear optics realm. The polarization entangled W states of Alice

and Bob can be represented by

|WN〉A =
1√
N
| (N − 1)H, 1V〉A =

1√
N

(| (N − 1)H, 0〉a′| 1V〉a + | (N − 2)H, 1V〉a′| 1H〉a),

|WM〉B =
1√
M
| (M − 1)H, 1V〉B =

1√
M

(| (M − 1)H, 0〉b′| 1V〉b + | (M − 2)H, 1V〉b′| 1H〉b),
(4.35)

where the photons denoted by the subscripts a(b) are sent to Claire by Alice (Bob) and

those denoted by a′(b′) are the rest of the qubits in the initial W states, and | lH, kV〉 is the

sum over all the terms with l modes in |H〉 and k modes in |V〉. After Claire receives the
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qubits, the state of the whole system shared by Alice, Bob and Claire becomes

|WN〉A ⊗ |WM〉B → 1√
NM

| (N − 1)H, 0〉a′| (M − 1)H, 0〉b′| 1V〉a| 1V〉b

+
1√
NM

| (N − 1)H, 0〉a′| (M − 2)H, 1V〉b′| 1V〉a| 1H〉b

+
1√
NM

| (N − 2)H, 1V〉a′| (M − 1)H, 0〉b′| 1H〉a| 1V〉b

+
1√
NM

| (N − 2)H, 1V〉a′| (M − 2)H, 1V〉b′| 1H〉a| 1H〉b,
(4.36)

where the system formed by the underlined terms belong to Claire. It is easy to see that

if Claire counts the number of V-polarized photons and finds that the outcome is two, the

state of the remaining qubits in the modes a′ and b′ becomes | (N − 1)H〉a′| (M − 1)H〉b′
which is a product state containing only H-polarized photons. Such an event takes place

with a probability of 1/NM . On the other hand, if her outcome is zero, then the state of

the remaining qubits becomes

1√
NM

| (N − 2)H, 1V〉a′| (M − 2)H, 1V〉b′ =

√
(N − 1)(M − 1)√

NM
|WN−1〉a′|WM−1〉b′ ,

(4.37)

which implies that the outcome is two W states, each of which has one qubit less than

the original state. Such an event takes place with a probability of (N − 1)(M − 1)/NM .

Now if Claire’s outcome is one, the remaining qubits will be either in the state | (N −
1)H, 0〉a′| (M − 2)H, 1V〉b′ or in the state | (N − 2)H, 1V〉a′| (M − 1)H, 0〉b′ . Now if Claire can

count the number of V-polarized photons without revealing the source of the V-photon,

that is, if the information of whether the detected V polarized photon is from Alice or from

Bob could be erased, then the resultant state will be a coherent superposition of the above

two terms,

1√
NM

(| (N − 1)H, 0〉a′| (M − 2)H, 1V〉b′ + | (N − 2)H, 1V〉a′| (M − 1)H, 0〉b′) .

(4.38)
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Eq. (4.38) can be shown to be equal to

√
N + M − 2√

NM
|WN+M−2〉a′b′ (4.39)

which implies that Claire’s outcome of one fuses the systems of Alice and Bob into a

(N + M − 2)-partite W state with a probability of (N + M − 2)/NM . To conclude, we see

that if Claire can count the number of V-polarized photons without revealing their source,

she can fuse the W-state systems of Alice and Bob with the loss of two qubits destroyed

by the detection to signal the successful fusion. It is also seen that when Claire’s outcome

is zero, upon communicating this result from Claire, Alice and Bob can send new qubits to

Claire to attempt a second round of fusion, which we call as recycling process. Therefore,

we classify Claire’s outcome as successful when the outcome is one, recyclable when the

outcome is zero, and failure when the outcome is two.

4.3.2 Linear optics implementation

Next, we discuss how the measurement process of Claire can be implemented in linear

optics. It turns out that Claire’s action corresponds to quantum parity checking which

is a very common and well-known concept in linear optics based quantum information

science. In Fig. 4.9, we show the detail of the proposed fusion gate which is composed of a

polarizing beamsplitter (PBS), half wave plates (HWP) and two polarization discriminating

detectors (D1 and D2). This discriminating detector, which is composed of a HWP, a PBS

and two photon detectors, enables the measurements in the diagonal polarization bases

|D〉 = (|H〉 + |V〉)/√2 and | D̄〉 = (|H〉 − |V〉)/√2. The HWPb in mode b changes the

polarization of the incoming photon as |H〉 ↔ |V〉.

Writing the photons in the diagonal bases | 1D〉 = (| 1H〉+ | 1V〉)/
√

2 and | 1D̄〉 = (| 1H〉−
| 1V〉)/

√
2, the state of Claire’s photons after the first PBS and just before the detectors
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Figure 4.9: Schematic diagram of the proposed optical fusion gate. The gate is

composed of a polarizing beamsplitter (PBS), half wave plates (HWP)

and two polarization discriminating detectors (D1 and D2). This dis-

criminating detector is composed of a HWP, a PBS and two photon

detectors, and enables the measurements in the diagonal polarization

bases |D〉 = (|H〉+ |V〉)/√2 and | D̄〉 = (|H〉 − |V〉)/√2.

shown in Fig. 4.9 becomes

| 1V〉a| 1V〉b → | 1H1V〉D1

=
| 1H1H〉D1 − | 1V1V〉D1√

2

| 1H〉a| 1H〉b → | 1H1V〉D2

=
| 1H1H〉D2 − | 1V1V〉D2√

2

| 1H〉a| 1V〉b → | 1H〉D1| 1H〉D2

=
(| 1D〉D1| 1D〉D2 + | 1D̄〉D1| 1D̄〉D2) + (| 1D〉D1| 1D̄〉D2 + | 1D̄〉D1| 1D〉D2)

2

| 1V〉a| 1H〉b → | 1V〉D1| 1V〉D2

=
(| 1D〉D1| 1D〉D2 + | 1D̄〉D1| 1D̄〉D2)− (| 1D〉D1| 1D̄〉D2 + | 1D̄〉D1| 1D〉D2)

2

(4.40)
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where the subscripts D1 and D2 denote the spatial modes where the Claire’s two detectors

are placed. Substituting Eq. (4.40) in Eq. (4.36) and arranging the terms, we immediately

see that if Claire’s detectors D1 and D2 both detects a photon in the state | 1D〉 or in

the state | 1D̄〉, then the initially separate W states become a single fused W state with

N +M−2 photons. If one of the detectors detects a photon in the state | 1D〉 and the other

in the state | 1D̄〉, either Alice or Bob should employ a π-phase shift to obtain the fused W

state. Thus, the overall success probability becomes ps = (N +M −2)/NM . The gate fails

to fuse the W states into a larger one if both photons are channeled into the same output

of the PBS. If D1 detects two photons in total, the remaining photons are all H-polarized

and both W states are completely destroyed. This failure event takes place with probability

pf = 1/NM . On the other hand, if both photons are detected by D2, Alice and Bob will

have smaller W states with N − 1 and M − 1 photons. This last case occurs with the

probability pr = (N − 1)(M − 1)/NM , and can be recycled which means that they can

attempt fusing again until either of the W state are destroyed.

4.3.3 Example of fusing two four-photon W states

In Fig. 4.10, we show an example of fusing two four-photon W states, |W4〉A ⊗ |W4〉B.

Using the expressions derived in the previous paragraphs, we find that four-photon W state

can be fused together to form a |W6〉 with a success probability of 3/8. Failure probability

is 1/16, and the probability of obtaining a recyclable outcome that leads to the reduced

W states |W3〉A ⊗ |W3〉B is 9/16. If we attempt to fuse |W3〉’s of Alice and Bob, we

obtain a successful event which leads to |W4〉 with a success probability of 1/4. The failure

probability becomes 1/16, and with a probability of 1/4, Alice and Bob will have reduced

W states |W2〉A⊗ |W2〉B. It is important that if either Alice or Bob ends up with a |W2〉,
trials for fusing should be stopped as fusing any arbitrary size W state with a |W2〉 will

not increase the size of the W state even for the successful outcome.
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Figure 4.10: Example of fusing two four-photon W states.

4.3.4 Brief discussion

In this section, we have proposed an optical gate for fusing two polarization entangled W

states. This proposed gate has the property that the larger W states become, the smaller

the probability of complete failure becomes. For example, attempt to fuse two |W10〉 will

completely fail only with a probability of 1%. Thus, we envision the following scenario:

The elementary optical gates introduced in the previous sections are used to prepare W

states and expand them to moderate sizes. Once a set of such moderate size W states are

prepared, then the fusion gate is applied to pairs of W states until all the states in the set

are fused to each other. The remaining photons in a complete failure situation and the pairs

in |W2〉 obtained in a recyclable situation can be used in the preparation and expansion

gates introduce earlier. Our preliminary calculations shows that the cost of preparing a W
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state of size N scales at most sub-exponentially. On the other hand, we still do not know

whether a polynomial scaling is possible or not. Moreover, the optimal strategy in fusing

W states when a set of W states with various sizes are given remains as an open problem.

4.4 Discussion

In this Chapter, we considered how one can increase the number of qubits forming W state

using local operations. We proposed two simple probabilistic optical gates for expanding

a polarization W state, and one fusion gate, which performs a parity checking to fuse two

W states to obtain a larger W state. We also performed a feasibility analysis for practical

implementation of the proposed expansion gates, and showed that they are within the

reach of the current technologies. Interestingly, for the preparation of |W3〉, the success

probability 3/10 of the former expansion gate is higher than the success probability 3/16

of the latter expansion gate. However in order to prepare large scale W states, if these

gates is cascaded, a success probability of the former expansion gate is larger than one of

the latter expansion gate. The latter expansion gate has the property that can be used for

expansion of GHZ states. The fusion gate requires a further study, and there is room for

further research to improve its performance and to determine the cost of preparing a large

scale W state with a desired size.





Chapter 5

Local transformation of two EPR

pairs into a tripartite W state

In this Chapter, we propose and experimentally demonstrate a transformation of two EPR

photon pairs distributed among three parties into a three-photon W state using local oper-

ations and classical communication (LOCC). In Sec. 5.1, we will give a brief concept and a

experimental scheme for converting two EPR photon pairs to a three photon W state. In

Sec. 5.2 and 5.3, we show our experimental setup and results. Finally, in Sec. 5.4, we give

a summary of this chapter.

5.1 Schematics of local transformation from two EPR

photon pairs to a three-photon W state

This section is organized as follows: In Sec. 5.1.1, we briefly describe the concept of local

conversion from two EPR photon pairs to a three-photon W state and Sec. 5.1.2 includes

the experimental scheme.

71
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5.1.1 Concept

What we want to do here is a local transformation of two EPR pairs distributed among

three parties (Alice, Bob and Charlie) into a three-photon W state using local operations

and classical communication [See Fig. 5.1]. In this approach, Charlie, who has two qubits,

one from each EPR pair, first performs a local operation on the qubits and then uses one

of them as a trigger for confirming the successful events. The remaining qubit becomes one

qubit of the state |W3〉 shared between Alice, Bob and Charlie.

Alice

Bob

Charlie
LOCC

Alice

Bob

Charlie

Trigger

Figure 5.1: The concept of a local transformation from two EPR pairs to the W

state. Two EPR pairs are shared by Alice-Charlie and Bob-Charlie.

Charlie’s operation is performed on his two qubit.

5.1.2 Experimental scheme

Our scheme simply uses a polarization-dependent beam splitter (PDBS) and photon detec-

tion to realize the desired transformation of Charlie’s two photons into one photon. In the

following, we discuss the working principle.

Let us assume that four photons in state |EPR〉12|EPR〉34 = (|HHHH〉1234+|HHVV〉1234

+ |VVHH〉1234 + |VVVV〉1234)/2 are distributed such that Alice has the photon in mode

1, Bob has mode 4, and Charlie has modes 2 and 3. Charlie sends his two photons to a

PDBS, whose output modes are labelled as 5 and 6 [see Fig. 5.2]. The transformation of a

PDBS for H- and V-polarized photons can be written as

â†2H =
√

1− µ â†5H −
√

µ â†6H, â†3H =
√

µ â†5H +
√

1− µ â†6H, (5.1)
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Figure 5.2: Local transformation from two EPR photon pairs to the W state using a

polarization dependent beamsplitter. Two EPR photon pairs are shared

by Alice-Charlie and Bob-Charlie.

and

â†2V =
√

1− ν â†5V −
√

ν â†6V, â†3V =
√

ν â†5V +
√

1− ν â†6V (5.2)

where â†jH (â†jV) denotes the creation operator of H (V)-polarized photon in the j-th mode

of PDBS, and µ (ν) is the transmission coefficient for H (V)-polarization. We consider its

action on four possible cases: | 1H〉2| 1H〉3 = â†2Hâ†3H| vac〉23 , | 1H〉2| 1V〉3 = â†2Hâ†3V| vac〉23,

| 1V〉2| 1H〉3 = â†2Vâ†3H| vac〉23 and | 1V〉2| 1V〉3 = â†2Vâ†3V| vac〉23, where | vac〉 stands for the

vacuum state. Using the relations given in Eqs. (5.1) and (5.2) for the PDBS, we find that

these input states are transformed into

| 1H〉2| 1H〉3 →
√

2µ(1− µ) | 2H〉5| 0〉6+(1− 2µ)| 1H〉5| 1H〉6 −
√

2µ(1− µ) | 0〉5| 2H〉6,
| 1H〉2| 1V〉3 →

√
ν(1− µ) | 1V1H〉5| 0〉6 −√νµ | 1V〉5| 1H〉6

+
√

(1− µ)(1− ν) | 1H〉5| 1V〉6 −
√

µ(1− ν) | 0〉5| 1V1H〉6,
| 1V〉2| 1H〉3 →

√
µ(1− ν) | 1V1H〉5| 0〉6 +

√
(1− ν)(1− µ) | 1V〉5| 1H〉6,

−√µν | 1H〉5| 1V〉6 −
√

ν(1− µ) | 0〉5| 1V1H〉6,
| 1V〉2| 1V〉3 →

√
2ν(1− ν) | 2V〉5| 0〉6+(1− 2ν)| 1V〉5| 1V〉6 −

√
2ν(1− ν) | 0〉5| 2V〉6.

(5.3)

Here, we are only interested in the case where a photon is present in each of the modes 1,
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4, 5 and 6. Keeping only such terms, the state after the PDBS is written as

1

2

[
(2µ− 1)|HHH〉146 +

√
(1− µ)(1− ν)|HVV〉146 −√µν|VHV〉146

]
|H〉5

+
1

2

[
(2ν − 1)|VVV〉146 −√µν|HVH〉146 +

√
(1− µ)(1− ν)|VHH〉146

]
|V〉5. (5.4)

If Charlie has detected an H-polarized photon (a V-polarized photon) in mode 5, he an-

nounces it and switches the polarization mode 6 as |H〉6 ↔ |V〉6. At this point, the three

parties share the following states

1

2

[
(2µ− 1)|HHV〉146 +

√
(1− µ)(1− ν)|HVH〉146 −√µν|VHH〉146

]
(5.5)

and

1

2

[
(2ν − 1)|VVH〉146 −√µν|HVV〉146 +

√
(1− µ)(1− ν)|VHV〉146

]
, (5.6)

respectively for H- and V- polarization detection in mode 5. If the phases and amplitudes

in Eqs. (5.5) and (5.6) are not equal, they can be adjusted by introducing phase shift and

attenuation for V-polarized photons in each mode. Then the three parties share the W

state |W〉3. The overall success probability is given by

pH ≡ 3

4
min{(2µ− 1)2, (1− µ)(1− ν), µν} (5.7)

and

pV ≡ 3

4
min{(2ν − 1)2, (1− µ)(1− ν), µν}. (5.8)

Now, we want to know the values µ and ν for obtaining the largest success probability.

Let us assume that µν is the minimum of {(2µ − 1)2, (1 − µ)(1 − ν), µν}, that is, µν ≤
(2µ − 1)2, and µν ≤ (1 − µ)(1 − ν). From µν ≤ (1 − µ)(1 − ν), we have ν ≤ 1 − µ, and

hence µν ≤ µ(1− µ). By solving µ(1− µ) = (2µ− 1)2, the parameter (µ, ν) of the PDBS

for the largest success probability pH are found to be µ = (5+
√

5)/10 and ν = (5−√5)/10

or vice versa. Then the amplitudes of three terms satisfy

2µ− 1 =
√

(1− µ)(1− ν) =
√

µν. (5.9)
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In this case, pV also takes the largest value. Here, even if we assume that (2µ − 1)2 or

(1− µ)(1− ν) is the minimum of {(2µ− 1)2, (1− µ)(1− ν), µν}, we will obtain the same

result, that is, µ = (5 +
√

5)/10 and ν = (5−√5)/10 or vice versa, for the largest success

probability pH. It is noted that when we assume that (2µ − 1)2 is the minimum, we need

to consider the cases of both µν ≤ (1− µ)(1− ν) and µν ≥ (1− µ)(1− ν).

For this choice, Eqs. (5.5) and (5.6) after locally compensating phase shift on mode 1

are represented by

1

2
√

5

[
|HHV〉146 + |HVH〉146 + |VHH〉146

]
(5.10)

and

1

2
√

5

[
|VVH〉146 + |HVV〉146 + |VHV〉146

]
. (5.11)

Hence, both probabilities take their optimal values pH = pV = 3/20 = 15% without intro-

ducing local attenuations and the total success probability becomes p = pH + pV = 3/10 =

30%.

In this work, in order to convert two EPR photon pairs to a three-photon W state, we

use a PDBS. However, it is noted that if we restrict ourselves to polarization-independent

beamsplitters (µ = ν), the optimal choice is µ = ν = 2/3. Using this BS, the output state

is obtained as

1

6

[
|HHH〉146 + |HVV〉146 − 2|VHV〉146

]
|H〉5

+
1

6

[
|VVV〉146 + |VHH〉146 − 2|HVH〉146

]
|V〉5. (5.12)

If Charlie has detected an H-polarized photon (a V-polarized photon) in mode 5, he an-

nounces it and switches the polarization of mode 6 as |H〉6 ↔ |V〉6. Upon hearing Charlie’s

outcome, Alice applies local phase shift and attenuations. The resulting state becomes the

W state |W〉3 with a total success probability of p = pH + pV = 1/6 with pH = pV = 1/12.

In our experiment, we made a sub-optimal choice of the PDBS parameters, µ = (7 +
√

17)/16 and ν = 1/2. One of the reasons for this choice is that the two-photon interference

for the V polarization is observed directly, which makes the alignment easier and gives us a
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Figure 5.3: Success probability of each terms by detecting H-polarized photon on

Charlie’s side. The circle gives µ = (9−√17)/16 and µ = (7+
√

17)/16.

clue about how well the two photons from different pairs are overlapped at the PDBS. We

show the derivation of optimal value for µ when ν = 1/2. Setting ν = 1/2 in Eq. (5.4), we

obtain

1

2

[
(2µ− 1)|HHH〉146 +

√
1− µ

2
|HVV〉146 −

√
µ

2
|VHV〉146

]
|H〉5

+
1

2

[
−

√
µ

2
|HVH〉146 +

√
1− µ

2
|VHH〉146

]
|V〉5, (5.13)

where we see that if Charlie has detected a V-polarized photon in mode 5, three parties

share the bi-separable state (
√

µ|HV〉14 +
√

1− µ|VH〉14)|H〉6/2
√

2. On the other hand, if

Charlie has detected an H-polarized photon in mode 5 and Alice introduces a phase shift

locally, they will end up with a W-like state from which |W3〉 can be prepared by equalizing

the weights of the components. Thus they should choose µ such that (µ−1/2)2 = (1−µ)/8

or (µ− 1/2)2 = µ/8 is satisfied to obtain the largest minimum weight [see Fig. 5.3]. These

equations, respectively, give µ = (7 +
√

17)/16 and µ = (9 −√17)/16, both of which lead

to the same weight, hence either of them can be used. Substituting µ = (7 +
√

17)/16 in

Eq. (5.13), and keeping only the terms leading to coincidence detection triggered by an
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H-photon detection in mode 5, the post-selected state in modes 1, 4 and 6 becomes

√
9−√17

8
√

2

[
|HHV 〉+ |HV H〉+

√
7 +

√
17√

9−√17
|V HH〉

]

146

, (5.14)

after Charlie compensates phase shift locally and changes the polarization of his photon in

mode 6. We see that the component VHH is the only one with a V in mode 1; thus its

weight can be equalized to the others by introducing polarization dependent losses in mode

1. Then the final state becomes
√

3(9−√17)/128|W3〉146 implying that local conversion

of two EPR pairs into a |W3〉 is achieved with unit fidelity at a success probability of

3(9−√17)/128 ∼ 11.4%.

5.2 Experimental setup

The details of our experimental setup are shown in Figs. 5.4 (a) and 5.5. The ultraviolet

(UV) pulses (wavelength 395nm, average power 380mW, diagonal polarization) from a

frequency-doubled mode-locked Ti:Sapphire laser (wavelength 790nm; pulse width 90fs;

repetition rate 82MHz) make two passes through a pair of Type I phase matched β-barium

borate (BBO) crystals (thickness 1.5mm) stacked with their optical axes orthogonal to

each other to produce two EPR photon pairs via spontaneous parametric down conversion

(SPDC) [see Appendix B]. Extra BBOs with thickness 1.65mm (comp) are placed on the

path of the each photon to compensate for walk-off effects. Nominal values of PDBS

(Showa Optronics Co., Ltd) used in experiment are µ ∼= 7/10 and ν ∼= 1/2. It is noted

that µ = (7 +
√

17)/16 is near to 0.695. The spectral filtering of the photons is done by

a narrow-band interference filter (IF, wavelength: 790nm; bandwidth: 2.7nm). All the

detectors D1, D4, D5 and D6 are silicon avalanche photodiodes placed after single-mode

optical fibers to achieve high fidelity.

Charlie’s local operations are performed as follows. Modes 2 and 3 are overlapped at

the PDBS, and polarizing beamsplitter (PBS) placed at the output mode 5 selects only

the H-polarized photons. A half-wave plate (HWPc) at mode 6 interchanges H and V

polarizations. On Alice’s side, a set of glass plates (GP) are placed in mode 1, which can be
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Figure 5.4: Schematics of the experiment. (a) The experimental setup. UV; ultra-

violet pulses (wavelength 395nm, average power 380mW, Model 3980,

Spectra physics) from a frequency-doubled mode-locked Ti:Sapphire

laser (wavelength 790nm; pulse width 90fs; repetition rate 82MHz,

Tsunami, Spectra physics), BBO; Type I phase matched β-barium bo-

rate (BBO) crystals (thickness 1.5mm) stacked with their optical axes

orthogonal to each other. Comp; extra BBO with thickness 1.65mm

to compensate for walk-off effects. PDBS; a polarization dependent

beamsplitter, GP; glass plate to compensate for amplitude, QWP; quar-

ter wave plate, HWP; half wave plate, PBS; polarizing beamsplitter,

F; narrow-band interference filter (IF, wavelength: 790nm; bandwidth:

2.7nm). Dj=1,4,5,6; silicon avalanche photodiode (SPCM-AQR, Perkin

Elmer). (b) The coincidence counting system. A delay box DB463

(EG&G ORTEC) compensate the electrical delay of singnals from the

SPCMs. We convert the TTL signals from SPCMs to NIM using NIM-

TTL-NIM ADAPTER C.A.E.N mod.89 (EG&G ORTEC). The NIM sig-

nals are then converted to short pulses using a discriminator 935 (EG&G

ORTEC). The output pulses of the discriminators are input to logic gate

module to perform AND operation on them. The output of the AND

gate is counted using Counter/Timer 974 (EG&G ORTEC). Finally, the

coincidence count of the Counter is sent to a personal computer.
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Figure 5.5: Picture of the experimental setup. When the ultraviolet pulse is incident

on BBO in forward pass, one EPR photon pair is generated and Bob

and Charlie share this EPR photon pair. Returning UV pulse, another

EPR photon pair is generated. Alice and Charlie share this EPR photon

pair. PDBS is in Circle.

tilted to adjust the amount of the polarization dependent loss. The two plates are tilted in

opposite directions such that the beam passing through experiences a minimal transverse

shift. Successful events are signalled by four-photon coincidences using photon detectors

in modes 1, 4, 5 and 6. The quarter wave plates (QWP), HWPs and PBSs in front of

the detectors in modes 1, 4 and 6 are used for verification experiments. The coincidence

counting system is summarized in Figure 5.4 (b).

5.3 Experimental results

5.3.1 Interference of two EPR photon pairs at a PDBS

In our experiment, it is important to match the temporal and spatial modes of the photons

in modes 2 and 3. In order to match the temporal modes of photons in 2 and 3, we
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Figure 5.6: Observed two photon interference by recording four-photon coincidences

as a function of the optical delay. PDBS works as a 50:50 BS for V-

polarized photons. The best fit to the data is represented by the solid

Gaussian curve which shows a coherence length of lc ' 110µm. The

visibility from the fitting curve is 0.885.

performed the Hong-Ou-Mandel (HOM) interference experiment.

The HOM interference observed in our experiment can be understood as follows: It is

known that when two indistinguishable photons are incident on a 50:50 BS, these photons

will go to only one of the outputs of the BS but never to both outputs at the same time

due to destructive interference which leads to bunching effect. The PDBS used in our

experiment acts as a 50:50 BS for V-polarized photons, and thus if the V-polarized photons

in modes 2 and 3 arrive at the PDBS within their coherence times, photons will channel

either to mode 2 or 3. Therefore, no coincidence detection will be observed.

In the experiment, we set the UV pulses to H-polarization so that in each pass of the UV

pulses through the BBOs, V-polarized photon pairs were generated. The HWPs inserted

in front of the detectors were adjusted so that only V-photons arrive at the detectors. One

photon from each pair was then sent to the PDBS and four-fold coincidences were recorded

while the optical delay experienced by the photons in modes 2 and 3 were changed using
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the motorized stage M. When the temporal overlap of these two V-photons at the PDBS

was achieved, HOM dip was observed as shown in Fig. 5.6. If we delay the photon from

one source with respect to the other one, the time overlap of the photons is decreased.

Then we lose temporal indistinguishability, and the destructive interference diminishes. In

order to estimate how well the indistinguishability is achieved, namely, how identical the

polarization, spatial, temporal and spectral modes of the photons are made, we applied a

gaussian curve fitting to the experimentally obtained data using the function

G(x) = A(1− V e
−(x−x0)2

2δ2 ), (5.15)

where G(x) is the coincidence count rate when the distance between the paths of the two

photons is x, A is the coincidence rate away from the HOM dip, V is the visibility of the

HOM-dip, x0 is the position of the minimum for zero time delay between the paths of the

photons and δ is the width of the HOM-dip. The choice of a gaussian function is due to

the fact that the transmission spectra of IFs are well-approximated by a gaussian function.

From the fitting curve, the visibility of the interference curve was found as 0.885. Although

the ideal value of the visibility of HOM dip is 1.0, the value obtained by this experiment

is smaller than 1.0. The deviation from the ideal value is caused by temporal and spatial

mode mismatch, multi-photon effects and dark counts in photondectors.

5.3.2 Characterization of initial EPR photon pairs

Before we generate a final three-photon state, we characterized initial two EPR photon

pairs from SPDC. We then estimated fidelity and entanglement of formation (EOF) of

reconstructed density matrices by using the maximum likelihood method.

After setting the zero-delay time of fitting curve, we adjusted the UV pulses to diagonal

polarization so that EPR pairs ρ12 and ρ34 were generated. Since the PDBS has different

transmission coefficients for H and V polarizations, the measurement bases for the photons

in modes 2 and 3 were selected by the HWPs and QWPs inserted before the PDBS. We

finally measure the state projected by H-polarization using a PBS in front of each detector

[see Fig. 5.7]. The QWP and HWPs in mode 6 and the set of glass plates in mode 1
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Figure 5.7: Measurement setup for the initial EPR pairs: (a) ρ12 and (b) ρ34

were adjusted so that they did not affect the polarization of the incoming photons. Each

pair was characterized by quantum state tomography (QST) using 16 different tomographic

settings chosen from the combinations of the single photon projections, |H〉, |V〉, |D〉 =

(|H〉 + |V〉)/√2, |R〉 = (|H〉 − i|V〉)/√2 and |L〉 = (|H〉 + i|V〉)/√2, on each photon

[see Fig. C.1 in Appendix C]. Coincidences were recorded in modes 1 and 6 for ρ12, and in

modes 4 and 6 for ρ34. From these measured polarization correlations, we estimated the

fidelity Fij ≡ 〈EPR |ρij|EPR〉 of each pair to the ideal EPR pair as F12 = 0.967 ± 0.002

and F34 = 0.976± 0.002. Here and henceforth, uncertainties in the fidelities and the other

quantities were calculated using a Monte Carlo routine assuming Poissonian statistics of

errors. We further reconstructed their density matrices ρ12 and ρ34, and calculated the

amounts of entanglement using entanglement of formation (EOF) [53] as 0.922± 0.006 and
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Figure 5.8: Real and imaginary parts of the reconstructed density matrices for the

initial EPR pairs: (a) ρ12 and (b) ρ34.

0.947 ± 0.004. The density matrices estimated using the maximum likelihood method are

shown in Fig. 5.8.

5.3.3 Characterization of the prepared three-photon W state

We characterized the prepared three-photon output state using quantum state tomography,

fidelity estimation and entanglement witness, and confirmed that the prepared state is a

genuine tripartite W state. In the tomographical reconstruction of density matrices, we

used iterative maximum likelihood method (IML). We also evaluated marginal bipartite

states of the prepared three-photon W state with entanglement of formation, concurrence

and Peres-Horodecki criterion.

In the experiments, we adjusted the glass plates (GP) to induce the required loss on

V-polarized photons in mode 1, and set the QWPs and HWPs in modes 2 and 3 such that
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they only add a constant phase shift between H and V on the incoming photons. HWP in

mode 5 was also adjusted so that only H-photons arrive at the detector. HWPc in mode 6

was set to swap H and V polarizations. We post-selected the successful events with four-

fold coincidences. The final three-photon state ρ146 was characterized using 64 different

tomographic settings [65] implemented by the sets of QWP, HWP and PBS in front of the

detectors in modes 1, 4 and 6 [see Fig. C.2 in Appendix C ]. We recorded coincidences for an

acquisition time of 5800s at each tomographic setting. From the recorded correlations, we

reconstructed the density matrix of ρ146 using iterative maximum likelihood (IML) method

[68, 69]. This is shown in Fig. 5.9 together with the density matrix for the ideal |W3〉. The

density matrix for the ideal W state consists of only nine real nonzero terms, namely, the

diagonal terms corresponding to |HHV〉, |HVH〉 and |VHH〉 and six off-diagonal elements

corresponding to coherences among these terms. It is seen that the density matrix of the

state prepared in our experiment has a similar structure with nine dominant elements.

Furthermore, from the reconstructed density matrix, we calculated the fidelity as F ≡
〈W3 |ρ146|W3〉 = 0.778 ± 0.043. We also calculated the entanglement witness of this state

using the operator WW = 2
3
1−|W3〉〈W3 | to distinguish it from separable and bi-separable

states [62, 63]. For an ideal W state, the expectation value of this operator is −1/3. We

find Tr(WWρ146) = −0.111 ± 0.043 for the final state in our experiment, which confirms

that ρ146 has a genuine tripartite entanglement. The achieved fidelity of 0.778 ± 0.043 is

higher than the value of 0.684± 0.024 previously obtained via local transformation from a

GHZ state [43], signifying the advantage of direct transformation that does not suffer from

the fidelity-efficiency trade-off.

One of the distinct properties of the W state is the entanglement left in the marginal

state of any pair of qubits after one qubit is removed. We confirmed this by reconstruct-

ing the density matrices ρ14, ρ16 and ρ46, corresponding respectively to Alice-Bob, Alice-

Charlie, and Bob-Charlie marginal bipartite states. These density matrices are given in

Fig. 5.10 together with the density matrix of the marginal bipartite state of the ideal W

state. We evaluated the entanglement of the marginal bipartite state using EOF [53], the

Peres-Horodecki criterion [55, 56] and concurrence [54]. The results of these analyses are
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Figure 5.9: (a) Real and imaginary parts of the reconstructed density matrix of the

experimentally obtained W state, and (b) that of the density matrix of

the ideal W state |W3〉.

given in Table. 5.1, which clearly shows the entanglement in the marginal bipartite states.

It is clearly seen that Alice and Bob, who initially had no shared entanglement, now en-

joys marginal bipartite entanglement which is created at the expense of reduction in the

initial entanglement between Alice and Charlie, and the one between Bob and Charlie.

These results together with the density matrix in Fig. 5.9 prove that we have achieved the

transformation of two EPR photon pairs to a three-photon W state using only LOCC.
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Figure 5.10: Real and imaginary parts of the reconstructed reduced density matrices

of the experimentally obtained W state, (a) ρ14, (b) ρ16 and (c) ρ46.

(d) Real and imaginary parts of the reduced density matrix of the ideal

state |W3〉 for which ρ14 = ρ16 = ρ46.
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EOF Concurrence Peres-Horodecki criterion

ideal 0.55 0.667 −0.206

modes 1-4 0.244± 0.066 0.415± 0.068 −0.123± 0.027

modes 1-6 0.263± 0.065 0.421± 0.066 −0.143± 0.030

modes 4-6 0.195± 0.065 0.322± 0.073 −0.091± 0.026

Table 5.1: Entanglement of formation (EOF), Concurrence and Peres-Horodecki

criterion of the prepared marginal bipartite states.

5.4 Discussion

The imperfection in the final W state produced in our experiment may be ascribed to the

following causes. Let us assume that the initial EPR photon pairs are represented by

|EPR〉12 =
1√
2

[
|H〉1|ϕ1H〉1|H〉2|ϕ2H〉2 + |V〉1|ϕ1V〉1|V〉2|ϕ2V〉2

]
(5.16)

and

|EPR〉34 =
1√
2

[
|H〉3|ϕ3H〉3|H〉4|ϕ4H〉4 + |V〉3|ϕ3V〉3|V〉4|ϕ4V〉4

]
, (5.17)

where |ϕjH(jV)〉j represents the state of each spatial mode. Furthermore, we assume that

further points, transmission and reflection efficiency of a PDBS and local filtering, are ideal.

Considering that fidelities of the initially prepared states ρ12 and ρ34 to an EPR photon

pair is also affected by the mode mismatches between the photons in modes 1 and 2, and

photons in modes 3 and 4, we write the expression for their fidelities using the above

assumption which leads to

F12 = p〈EPR |Trs[|EPR〉12〈EPR |]|EPR〉p
= Trs[ p〈EPR |EPR〉12〈EPR |EPR〉p ]

=
1

4

(
2 + 2|1〈ϕ1H |ϕ1V〉12〈ϕ2H |ϕ2V〉2|

)
, (5.18)

for the first EPR photon pair, where subscripts p and s stand for polarization modes and
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spatial modes. Similarly, we have

F34 =
1

4

(
2 + 2|3〈ϕ3H |ϕ3V〉34〈ϕ4H |ϕ4V〉4|

)
(5.19)

for the second EPR photon pair. For simplicity, we assume that 1〈ϕ1H |ϕ1V〉1 =2 〈ϕ2H |ϕ2V〉2
= η12 and 3〈ϕ3H |ϕ3V〉3 =4 〈ϕ4H |ϕ4V〉4 = η34. Then, from the estimated fidelities F12 and

F34, we have η12 = 0.96 and η34 = 0.97.

We also estimate the amount of the mode-mismatch from the visibility of the interference

experiment in Sec. 5.3.1. Here we show the relation between the amount of the mode-

mismatch and visibility. Under the current assumptions, V-polarized photons in modes 2

and 3 are written as |V〉2|ϕ2V〉2 and |V〉3|ϕ3V〉3. After the PDBS, which acts as 50: 50 BS

for V-polarized photons, a coincidence counting at modes 5 and 6 will postselect the state

|Γ〉56 =
1√
2
|V〉5|V〉6[|ϕ2V〉5|ϕ3V〉6 − |ϕ3V〉5|ϕ2V〉6], (5.20)

where the state is unnormalized. Then the probability of the coincidence detection is given

by

Ms = 56〈Γ |Γ〉56

= 1− |5〈ϕ2V |ϕ3V〉56〈ϕ2V |ϕ3V〉6|. (5.21)

Since the visibility V measured in the experiment is 1 − V = Ms, we have 〈ϕ2V |ϕ3V 〉 =
√

V = 0.94. We further assume that the mode-mismatch estimated from the visibility of

the interference of V-polarized photons are the same for photons of various polarizations.

That is, the mode-mismatch factor is the same regardless of the polarization of photons in

modes 2 and 3. We set 〈ϕ2V |ϕ3V 〉 = 〈ϕ2H |ϕ3H〉 = 〈ϕ2H |ϕ3V〉 = 〈ϕ2V |ϕ3H〉 = ηV = 0.94.

Using Eqs. (5.3), (5.16) and (5.17), and detecting H-polarized photon in mode 5, the

output state is given by

| θ〉 = |H〉1|V〉6|H〉4
(

µ|ϕ2H〉5|ϕ1H〉1|ϕ3H〉6|ϕ4H〉4
+(µ− 1)|ϕ3H〉5|ϕ1H〉1|ϕ2H〉6|ϕ4H〉4

)

+

√
1− µ

2
|H〉1|H〉6|V〉4|ϕ2H〉5|ϕ1H〉1|ϕ3V〉6|ϕ4V〉4

+

√
µ

2
|V〉1|H〉6|H〉4|ϕ3H〉5|ϕ1V〉1|ϕ2V〉6|ϕ4H〉4. (5.22)
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Let us assume that we compensate amplitude imbalances by local filtering. Then the state

is represented by

|Θ〉 =
1√
3

[
|H〉1|V〉6|H〉4

( µ

υ
|ϕ2H〉5|ϕ1H〉1|ϕ3H〉6|ϕ4H〉4

+
µ− 1

υ
|ϕ3H〉5|ϕ1H〉1|ϕ2H〉6|ϕ4H〉4

)

+|H〉1|H〉6|V〉4|ϕ2H〉5|ϕ1H〉1|ϕ3V〉6|ϕ4V〉4
+|V〉1|H〉6|H〉4|ϕ3H〉5|ϕ1V〉1|ϕ2V〉6|ϕ4H〉4

]
. (5.23)

Where υ =
√

2µ2 − 2µ + 1 + 2µ(µ− 1)ηV
2. The expression for the fidelity of the prepared

state to an ideal W state can be found using Eq. (5.23) in

FW3 = p〈W |Trs[|Θ〉〈Θ |]|W〉p
= Trp

[
(Trs[|Θ〉〈Θ |])|W〉p〈W |

]

= Trs[ p〈W |Θ〉〈Θ |W〉p ]

=
1

9

∣∣∣
∣∣∣ µ

υ
|ϕ2H〉5|ϕ1H〉1|ϕ3H〉6|ϕ4H〉4 +

µ− 1

υ
|ϕ3H〉5|ϕ1H〉1|ϕ2H〉6|ϕ4H〉4

+|ϕ2H〉5|ϕ1H〉1|ϕ3V〉6|ϕ4V〉4 + |ϕ3H〉5|ϕ1V〉1|ϕ2V〉6|ϕ4H〉4
∣∣∣
∣∣∣
2

=
1

9

[ 2µ2 − 2µ + 1

ν2
+

2µ(µ− 1)

ν2
+

2µ(η34
2 + ηV

2η12)

ν

+
2(µ− 1)(η12

2 + ηV
2η34)

ν
+ 2ηV

2η12η34 + 2
]
. (5.24)

Substituting µ = (7 +
√

17)/16, ηV = 0.94 and η12 = η34 = 1, we obtain FW3 = 0.89, which

is considered to be coming from the mode mismatch between modes 2 and 3. If we include

the imperfections in the initially prepared EPR photon pairs, η12 = 0.96 and η34 = 0.97,

the fidelity further drops to FW3 = 0.87.

Next, for amplitude imbalances of three diagonal terms of the final state observed in

Fig. 5.9 (a), we consider how the prepared W state is improved by using local filtering. If we

compensate the amplitude differences among the three diagonal terms in Fig. 5.9 (a), the

fidelity of the prepared W state increases to 0.81. Furthermore, compensating the relative

phase of the prepared W state |W3〉 in Fig. 5.9 (a), the fidelity increases to 0.83. It is seen

that the effect of the unequal weights of the diagonal elements of the density matrix of the
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prepared state on the fidelity is much higher than that of the unwanted relative phase shift.

Thus, we conclude that the residual imbalance explains further reduction from FW3 = 0.87

by 0.04, arriving in the vicinity of the error bar of the observed fidelity, Fexp = 0.778±0.043.

In this chapter, we have proposed and experimentally demonstrated a method for con-

verting two EPR photon pairs to a three-photon W state via LOCC, using a polarization

dependent beamsplitter and post-selection. The achieved final state was shown to have

various characteristics of the W state. This work extends our ability to manipulate multi-

partite entanglement, since our results imply that it is now possible to generate arbitrary

three qubit states from a single resource of two EPR pairs via LOCC with a moderate

success probability and with fidelity only limited by the imperfection of the apparatus.



Chapter 6

Conclusion and Future Prospects

6.1 Summary

In the first part of our work, we have proposed two optical gates for the preparation and

expansion of photonic W states, and one optical gate for fusing two arbitrary size W state

into a larger one. The gates work under the condition of local operations on a single site.

The fusion gate also uses classical communication. In such a setting, there are two main

difficulties in working with W states: One is that a W state cannot be expanded by a

unitary operation. Another is that an added new qubit must form pairwise entanglement

with the remaining qubits without direct interactions. A remedy for these difficulties is to

allow probabilistic operations where successful events do not take place deterministically

but once they take place the gate prepares the desired output with unit fidelity.

First, we have proposed a simple optical gate for expanding polarization entangled W

states using a polarization dependent beamsplitter. This gate expands a state |WN〉 into

a state |WN+1〉, and also prepares an arbitrary W state by cascading the gate. When an

initial state is a photon from an EPR photon pair, this gate can prepare a three photon W

state with a success probability of 3/10 which is higher than all the previous schemes so far.

Taking into account the imperfections encountered in practice, we analyzed its feasibility

for the expansion of an EPR photon pair to the three photon W state. In addition, the gate
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does not require stability of optical paths and does not require sub-wavelength adjustments.

The gate used the beamsplitter which has different transmission/reflection characteristics

for H- and V-polarized photons. On the other hand, next, we have proposed an elementary

optical gate for expanding polarization entangled W state using two non-polarizing 50:50

beamsplitters. With a proper seeding, the gate can also be used for preparation of W states,

and it has a larger success probability than other preparation methods for a four-photon

W state. We showed that the gate is easy to demonstrate and feasible with the current

experimental technologies. A fundamental characteristic of this gate is that polarization-

dependent components play no essential role and two ancillary photons play a significant

role. The gate has the property that just by modifying the state of the ancilla photons, a

GHZ state can be prepared and expanded. These two gates have differences interestingly.

For example, for the preparation of |W3〉, the success probability 3/10 of the former gate

is higher than the success probability 3/16 of the latter gate. If the gate is cascaded,

the success probability of the former gate is smaller than that of the latter gate. Finally,

we have proposed an optical fusion gate for polarization-entangled W states. The fusion

gate takes the cost of preparing N -photon W states from an exponential overhead into a

subexponential one; however, there are many open problems which needs a detailed analysis

and consideration. For example, we do not know whether a polynomial scaling is possible

or not, nor how much cost it takes for the preparation and the growth for a W state of

desired size under various scenarios. Considering the obtained results, we believe that these

gates will provide a simple and useful tool to probe interesting features of multipartite W

states.

In the second part of our work, we proposed and experimentally demonstrated a trans-

formation of two EPR photon pairs distributed among three parties into a three-photon

W state using local operations and classical communication (LOCC). We showed that the

proposed local transformation induced by a PDBS, polarization dependent loss and post-

selection prepares a W state with high fidelity. We characterized the final state using

quantum state tomography on the three-photon state and on its marginal bipartite states

experimentally. The fidelity of the final state to the ideal W state is 0.778 ± 0.043 and
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the expectation value for its witness operator is −0.111± 0.043 implying the success of the

proposed local transformation. Considering the fact that entanglement is a quantum re-

source under LOCC, it is important to convert the common resource of entanglement, EPR

photon pairs, into multi-qubit entangled states by using only LOCC. Our proposal and

demonstration address this problem by proposing and demonstrating an effective method

for direct conversion of two EPR photon pairs into a three-qubit W state via LOCC. Since

the conversion of two EPR photon pairs to three-photon GHZ states has been already

done, our achievement implies that we are now able to generate any state of three photons

starting from a common resource of EPR photon pairs, which we believe is a significant

advancement in our ability to manipulate quantum entanglement.

6.2 Future Outlook

During the studies which is the subject of this thesis, we proposed optical schemes for

expanding and fusing W states, and experimentally demonstrated local transformation of

two EPR photon pairs into a three-photon W state. With the techniques developed during

this study, sharing tripartite and even larger W states among many distantly located parties

has become within the reach of the current state-of-the-art quantum optics technologies.

As a result of our work, we now know how to prepare one of the inequivalent classes of

multipartite entanglement, namely the W state, from EPR pairs, which are one of the basic

resources of quantum information science. Our toolbox to prepare inequivalent classes of

tripartite entanglement using LOCC is now complete.

Although the recent studies including the present thesis have shown that parity checking

gate plays an important role in fusing two GHZ states into a larger one, two W states

into a larger W state, and two cluster states into a larger cluster, we still do not know

whether parity checking gate can be used as a fusion gate for other classes of multipartite

entanglement. This is partly due to the lack of complete understanding of the entanglement

structure of those multipartite states. For example, fusion of two Dicke states, which are

the equally weighted superposition of all permutations of H and V polarizations, into a
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larger Dicke state is still an open problem. Indeed, at present there is only one proposal

and demonstration for preparing a four-photon Dicke state [74].

There have been proposals to classify multipartite entangled states under various condi-

tions [75, 76, 77]. Except for tripartite entanglement, multipartite entanglement is not well

understood and there are few proposals for the preparation of multipartite entanglement

of other classes so far. Thus we have many open questions to solve such as classification of

the states, their efficient preparation using optical techniques, and their expansion. For a

far future prospect, this direction sounds to be interesting, albeit a challenging task. We

should keep in mind that it is such challenging tasks which are given us the advancement,

and more innovative and surprising results in all of fields through science, technology and

philosophy.



Appendix A

Expansion and fusion of polarization

entangled GHZ states using a

polarizing beamsplitter

We show the expansion and fusion for polarization entangled GHZ states using a polarizing

beamsplitter.

The expansion gate for polarization entangled GHZ states is shown in Fig. A.1 (a). The

gate is composed of a polarizing beamsplitter and a half wave plate (HWP) for compensating

a phase shift. With the coincidence detection between modes 3 and 4, the successful gate

operation is given by the following transformations

| 1H〉1| 1H〉2 → −| 1H〉3| 1H〉4,
| 1V〉1| 1V〉2 → −| 1V〉3| 1V〉4, (A.1)

where we have included the effect of the HWP in mode 4. If the input photon is one

photon in a three-photon GHZ state |GHZ3〉 = (| 1H〉0′| 1H〉0| 1H〉1 + | 1V〉0′| 1V〉0| 1V〉1)/
√

2

and the new added photon is an equal superposition of H- and V- polarized photons,
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Figure A.1: (a) Expansion gate and (b) fusion gate for polarization entangled GHZ

states. The espansion gate is composed of a polarizing beamsplitter

(PBS) and a half wave plate (HWP) for compensating a phase shift. The

fusion gate is composed of a PBS and two polarization discriminating

detectors(D1 and D2). This discriminating detector is composed of a

HWP, a PBS and two photondetectors.

(| 1H〉2 + | 1V〉2)/
√

2, the output state for the post-selected events are given by

|GHZ3〉 → −1

2
[ | 1H〉0′| 1H〉0| 1H〉3| 1H〉4 + | 1V〉0′| 1V〉0| 1V〉3| 1V〉4]

→ −1

2
|GHZ4〉, (A.2)

which means that the |GHZ4〉 state is produced with probability 1/2. From this result,

It is also apparent that it expand any size of GHZ state |GHZN〉 to |GHZN+1〉 with the

success probability 1/2.

The fusion gate for polarization entangled GHZ states is shown in Figure A.1 (b). The

gate is composed of a polarizing beamsplitter (PBS) and two polarization discriminating

detectors (D1 and D2). This discriminating detector is composed of a HWP, a PBS and

two photondetectors. If both polarization discriminating detectors (D1 and D2) have click

events, it means that a GHZ state is fused with probability 1/2. On the other hand, if



97

GHZ 3

Claire

Alice and Bob

GHZ3
41

2 3 65

4

1

2
6

Alice Bob

1/2 1/2

12 4 6

Alice Bob

GHZ 4

Figure A.2: Example of fusing two three-photon GHZ states.

either polarization discriminating detector D1 or D2 has a click events, it means that a

fusion of the GHZ state is failed with probability 1/2. Thus we can fuse any size of GHZ

state |GHZN〉. We show the example of fusing two three-photon GHZ states |GHZ3〉 in

Fig. A.2.





Appendix B

Alignment

Here, we describe the methods we have employed for the alignment of beams for spontaneous

parametric down conversion (SPDC) process. Since the single photons prepared by SPDC

process cannot be seen by naked-eye, construction of the optical path along which they will

travel and their efficient coupling to the detectors must be done using visible alignment

beams. As the alignment beam for the construction of the optical paths, we use a part of

the coherent light emitted from a mode-locked Ti:sapphire laser (wavelength 790nm; pulse

width 90fs; repetition rate 82MHz).

In the first method, we send the alignment beam to a 50:50 BS such that the beam hits

the BS at a slightly off center point. The transmitted and reflected portion of the beam

are directed to right angle prisms, which are located on motorized stages, as shown in Fig.

B.1 (a). The two beams return back to the beam splitter after travel along the prisms.

These separated parallel beams (twin beams) are then directed to a system of two convex

lenses with the first and second lenses, respectively, having focus lengths as f = 80 mm

and f = 90 mm. The parallel beams cross each other at the focus of the first lens and

travels to the second lens (see Fig. B.1 (a)) that further directs them to a BBO crystal. If

the twin beams spatially and temporally overlap on the BBO crystal, an ultraviolet (UV)

pulse is generated by second harmonic generation (SHG). At the exit of the BBO, three

beams are clearly seen. The UV beam has a wavelength of 395 nm, while the other two

beams are residual twin beams with wavelengths of 790 nm. The intensity of the UV pulse
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(a)
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BBO

BBO
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single mode fiber

Figure B.1: (a) Preparation of the alignment beams and adjustment of the genera-

tion of UV pulse from BBO. (b) Alignment of backward optical paths

is then adjusted by properly focusing the twin beams on the BBO. One can check that the

UV is due to the mixing of the twin beams on the BBO by blocking one of the twin beams

and confirming that the UV beam disappears. After the maximization of the intensity of

the UV beam, the two residual beams of the twin beams are used as the alignment beams

to construct the optical paths between the BBO and the single-mode fiber (SMF) coupled

single photon counter modules (SPCMs). Here, it is important that the maximal coupling

into the SMF is achieved for both of the beams. The idea behind the efforts explained

so far is that if the UV pulse used in the experiment of single photon pair preparation

using BBO is overlapped with the UV pulse generated by the twin alignment beams, the

idler and signal photons from the spontaneous parametric down conversion (SPDC) will

be created in the direction of the twin alignment beams after the BBO. Thus, keeping the
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twin alignment beams and the UV beam generated by mixing them on the BBO, we direct

the UV pulse that will be used in the main experiment to the BBO in such a way that

near-perfect overlap of the two UV beams are achieved both in size and the shape. After

the maximal overlap is achieved, we block the twin beams, and use only the UV pump pulse

for SPDC. By observing the count rates of the true idler and signal photons with SPCMs,

we fine tune the fiber-coupler and the orientation of the BBO axis to maximize the detected

signal and idler photons. This completes the process of constructing the forward optical

paths.

In order to further optimize the optical paths and hence the coupling, we apply a back-

ward optical path construction [see Fig. B.1 (b)]. In this method, we disconnect the SPCMs

from the SMFs, and instead couple continuous-wave (CW) light (wavelength 790nm) from

the same end of the fibers. The light beams coupled to SMFs then travel the optical paths

back to the BBO and further. If the CW light beams, propagated past the BBO in backward

direction, overlap with the twin alignment beams propagating in the forward direction, we

accept the constructed paths. Otherwise, we fine tune the system until the overlap and

photon count rate are maximized.





Appendix C

Measurement data

The measurement data for initial two EPR photon pairs using quantum state tomography

is shown in Fig. C.1, and the measurement data for final prepared W state using quantum

state tomography is also shown in Fig. C.2.
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Figure C.1: Measurement data for initial two EPR photon pairs using quantum state

tomography: (a) ρ12 and (b) ρ34. One base measurement time 1 [s] and

2 [cycle].
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Figure C.2: Measurement data for final prepared W state (ρ146) using quantum state

tomography. One base measurement time 20 [s] and 290 [cycle].
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3 T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto

“Local expansion of photonic W state using a polarization dependent beamsplitter”

New J. Phys. 11, 023024 (2009).
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1 T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto

“An optical gate for seeding large scale polarization entangled W-state”

3th Handai Nanoscience and Nanotechnology International Symposium, Japan,

September 26 - 28 2007.
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[71] Ş. K. Özdemir, A. Miranowicz, M. Koashi, and N. Imoto, Phys. Rev. A. 66, 053809

(2002).

[72] T. Yamamoto, M. Koashi, and N. Imoto, Phys. Rev. A. 64, 012304 (2001).
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